ترغب بنشر مسار تعليمي؟ اضغط هنا

KMT-2019-BLG-0842Lb: A Cold Planet Below the Uranus/Sun Mass Ratio

280   0   0.0 ( 0 )
 نشر من قبل Youn Kil Jung
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a cold planet with a very low planet/host mass ratio of $q=(4.09pm0.27) times 10^{-5}$, which is similar to the ratio of Uranus/Sun ($q=4.37 times 10^{-5}$) in the Solar system. The Bayesian estimates for the host mass, planet mass, system distance, and planet-host projected separation are $M_{rm host}=0.76pm 0.40 M_odot$, $M_{rm planet}=10.3pm 5.5 M_oplus$, $D_{rm L} = 3.3pm1.3,{rm kpc}$, and $a_perp = 3.3pm 1.4,{rm au}$, respectively. The consistency of the color and brightness expected from the estimated lens mass and distance with those of the blend suggests the possibility that the most blended light comes from the planet host, and this hypothesis can be established if high resolution images are taken during the next (2020) bulge season. We discuss the importance of conducting optimized photometry and aggressive follow-up observations for moderately or very high magnification events to maximize the detection rate of planets with very low mass ratios.

قيم البحث

اقرأ أيضاً

We analyze KMT-2019-BLG-1339, a microlensing event with an obvious but incompletely resolved brief anomaly feature around the peak of the light curve. Although the origin of the anomaly is identified to be a companion to the lens with a low mass rati o $q$, the interpretation is subject to two different degeneracy types. The first type is the ambiguity in $rho$, representing the angular source radius scaled to the angular radius of the Einstein ring, $theta_{rm E}$, and the other is the $sleftrightarrow s^{-1}$ degeneracy. The former type, `finite-source degeneracy, causes ambiguities in both $s$ and $q$, while the latter induces an ambiguity only in $s$. Here $s$ denotes the separation (in units of $theta_{rm E}$) in projection between the lens components. We estimate that the lens components have masses $(M_1, M_2)sim (0.27^{+0.36}_{-0.15}~M_odot, 11^{+16}_{-7}~M_{rm J})$ and $sim (0.48^{+0.40}_{-0.28}~M_odot, 1.3^{+1.1}_{-0.7}~M_{rm J})$ according to the two solutions subject to the finite-source degeneracy, indicating that the lens comprises an M dwarf and a companion with a mass around the planet/brown dwarf boundary or a Jovian-mass planet. It is possible to lift the finite-source degeneracy by conducting future observations utilizing a high resolution instrument because the relative lens-source proper motion predicted by the solutions are widely different.
We present the analysis of a very high-magnification ($Asim 900$) microlensing event KMT-2019-BLG-1953. A single-lens single-source (1L1S) model appears to approximately delineate the observed light curve, but the residuals from the model exhibit sma ll but obvious deviations in the peak region. A binary lens (2L1S) model with a mass ratio $qsim 2times 10^{-3}$ improves the fits by $Deltachi^2=181.8$, indicating that the lens possesses a planetary companion. From additional modeling by introducing an extra planetary lens component (3L1S model) and an extra source companion (2L2S model), it is found that the residuals from the 2L1S model further diminish, but claiming these interpretations is difficult due to the weak signals with $Deltachi^2=16.0$ and $13.5$ for the 3L1S and 2L2L models, respectively. From a Bayesian analysis, we estimate that the host of the planets has a mass of $M_{rm host}=0.31^{+0.37}_{-0.17}~M_odot$ and that the planetary system is located at a distance of $D_{rm L}=7.04^{+1.10}_{-1.33}~{rm kpc}$ toward the Galactic center. The mass of the securely detected planet is $M_{rm p}=0.64^{+0.76}_{-0.35}~M_{rm J}$. The signal of the potential second planet could have been confirmed if the peak of the light curve had been more densely observed by followup observations, and thus the event illustrates the need for intensive followup observations for very high-magnification events even in the current generation of high-cadence surveys.
We report the analysis of OGLE-2019-BLG-0960, which contains the smallest mass-ratio microlensing planet found to date (q = 1.2--1.6 x 10^{-5} at 1-sigma). Although there is substantial uncertainty in the satellite parallax measured by Spitzer, the m easurement of the annual parallax effect combined with the finite source effect allows us to determine the mass of the host star (M_L = 0.3--0.6 M_Sun), the mass of its planet (m_p = 1.4--3.1 M_Earth), the projected separation between the host and planet (a_perp = 1.2--2.3 au), and the distance to the lens system (D_L = 0.6--1.2 kpc). The lens is plausibly the blend, which could be checked with adaptive optics observations. As the smallest planet clearly below the break in the mass-ratio function (Suzuki et al. 2016; Jung et al. 2019), it demonstrates that current experiments are powerful enough to robustly measure the slope of the mass-ratio function below that break. We find that the cross-section for detecting small planets is maximized for planets with separations just outside of the boundary for resonant caustics and that sensitivity to such planets can be maximized by intensively monitoring events whenever they are magnified by a factor A > 5. Finally, an empirical investigation demonstrates that most planets showing a degeneracy between (s > 1) and (s < 1) solutions are not in the regime (|log s| >> 0) for which the close/wide degeneracy was derived. This investigation suggests a link between the close/wide and inner/outer degeneracies and also that the symmetry in the lens equation goes much deeper than symmetries uncovered for the limiting cases.
We show that the perturbation at the peak of the light curve of microlensing event KMT-2019-BLG-0371 is explained by a model with a mass ratio between the host star and planet of $q sim 0.08$. Due to the short event duration ($t_{rm E} sim 6.5 $ days ), the secondary object in this system could potentially be a massive giant planet. A Bayesian analysis shows that the system most likely consists of a host star with a mass $M_{rm h} = 0.09^{+0.14}_{-0.05}M_{odot}$ and a massive giant planet with a mass $M_{rm p} = 7.70^{+11.34}_{-3.90}M_{rm Jup}$. However, the interpretation of the secondary as a planet (i.e., as having $M_{rm p} < 13 M_{rm Jup}$) rests entirely on the Bayesian analysis. Motivated by this event, we conduct an investigation to determine which constraints meaningfully affect Bayesian analyses for microlensing events. We find that the masses inferred from such a Bayesian analysis are determined almost entirely by the measured value of $theta_{rm E}$ and are relatively insensitive to other factors such as the direction of the event $(ell, b)$, the lens-source relative proper motion $mu_{rm rel}$, or the specific Galactic model prior.
We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 3 0$, in the data collected from high-cadence surveys in and before the 2018 season. From this investigation, we identify an anomaly in the lensing light curve of the event KMT-2018-BLG-1025. The analysis of the light curve indicates that the anomaly is caused by a very low mass-ratio companion to the lens. We identify three degenerate solutions, in which the ambiguity between a pair of solutions (solutions B) is caused by the previously known close--wide degeneracy, and the degeneracy between these and the other solution (solution A) is a new type that has not been reported before. The estimated mass ratio between the planet and host is $qsim 0.8times 10^{-4}$ for the solution A and $qsim 1.6times 10^{-4}$ for the solutions B. From the Bayesian analysis conducted with measured observables, we estimate that the masses of the planet and host and the distance to the lens are $(M_{rm p}, M_{rm h}, D_{rm L})sim (6.1~M_oplus, 0.22~M_odot, 6.7~{rm kpc})$ for the solution A and $sim (4.4~M_oplus, 0.08~M_odot, 7.5~{rm kpc})$ for the solutions B. The planet mass is in the category of a super-Earth regardless of the solutions, making the planet the eleventh super-Earth planet, with masses lying between those of Earth and the Solar systems ice giants, discovered by microlensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا