ﻻ يوجد ملخص باللغة العربية
We present a temperature dependent photoluminescence study of silicon optical nanocavities formed by introducing point defects into two-dimensional photonic crystals. In addition to the prominent TO phonon assisted transition from crystalline silicon at ~1.10 eV we observe a broad defect band luminescence from ~1.05-1.09 eV. Spatially resolved spectroscopy demonstrates that this defect band is present only in the region where air-holes have been etched during the fabrication process. Detectable emission from the cavity mode persists up to room-temperature, in strong contrast the background emission vanishes for T > 150 K. An Ahrrenius type analysis of the temperature dependence of the luminescence signal recorded either in-resonance with the cavity mode, or weakly detuned, suggests that the higher temperature stability may arise from an enhanced internal quantum efficiency due to the Purcell-effect.
Monolayers of transition metal dichalcogenides (TMDCs) have emerged as new optoelectronic materials in the two dimensional (2D) limit, exhibiting rich spin-valley interplays, tunable excitonic effects, and strong light-matter interactions. An essenti
Color centers in diamond are promising spin qubits for quantum computing and quantum networking. In photon-mediated entanglement distribution schemes, the efficiency of the optical interface ultimately determines the scalability of such systems. Nano
One dimensional nanobeam photonic crystal cavities are fabricated in silicon dioxide with silicon nanocrystals. Quality factors of over 9 x 10^3 are found in experiment, matching theoretical predictions, with mode volumes of 1.5(lambda/n)^3 . Photolu
We present a comparative micro-photoluminescence study of the emission intensity of self-assembled germanium islands coupled to the resonator mode of two-dimensional silicon photonic crystal defect nanocavities. The emission intensity is investigated
Photonic crystal membranes (PCM) provide a versatile planar platform for on-chip implementations of photonic quantum circuits. One prominent quantum element is a coupled system consisting of a nanocavity and a single quantum dot (QD) which forms a fu