ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards analytical approaches to the dynamical-cluster approximation

339   0   0.0 ( 0 )
 نشر من قبل Jim Hague
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف J.P. Hague




اسأل ChatGPT حول البحث

I introduce several simplified schemes for the approximation of the self-consistency condition of the dynamical cluster approximation. The applicability of the schemes is tested numerically using the fluctuation-exchange approximation as a cluster solver for the Hubbard model. Thermodynamic properties are found to be practically indistinguishable from those computed using the full self-consistent scheme in all cases where the non-interacting partial density of states is replaced by simplified analytic forms with matching 1st and 2nd moments. Green functions are also compared and found to be in close agreement, and the density of states computed using Pad{e} approximant analytic continuation shows that dynamical properties can also be approximated effectively. Extensions to two-particle properties and multiple bands are discussed. Simplified approaches to the dynamical cluster approximation should lead to new analytic solutions of the Hubbard and other models.

قيم البحث

اقرأ أيضاً

The dynamical cluster approximation (DCA) is a quantum cluster extension to the single-site dynamical mean-field theory that incorporates spatially nonlocal dynamic correlations systematically and nonperturbatively. The DCA$^+$ algorithm addresses th e cluster shape dependence of the DCA and improves the convergence with cluster size by introducing a lattice self-energy with continuous momentum dependence. However, we show that the DCA$^+$ algorithm is plagued by a fundamental problem when its self-consistency equations are formulated using the bare Greens function of the cluster. This problem is most severe in the strongly correlated regime at low doping, where the DCA$^+$ self-energy becomes overly metallic and local, and persists to cluster sizes where the standard DCA has long converged. In view of the failure of the DCA$^+$ algorithm, we propose to complement DCA simulations with a post-interpolation procedure for single-particle and two-particle correlation functions to preserve continuous momentum dependence and the associated benefits in the DCA. We demonstrate the effectiveness of this practical approach with results for the half-filled and hole-doped two-dimensional Hubbard model.
We examine a central approximation of the recently introduced Dynamical Cluster Approximation (DCA) by example of the Hubbard model. By both analytical and numerical means we study non-compact and compact contributions to the thermodynamic potential. We show that approximating non-compact diagrams by their cluster analogs results in a larger systematic error as compared to the compact diagrams. Consequently, only the compact contributions should be taken from the cluster, whereas non-compact graphs should be inferred from the appropriate Dyson equation. The distinction between non-compact and compact diagrams persists even in the limit of infinite dimensions. Non-local corrections beyond the DCA exist for the non-compact diagrams, whereas they vanish for compact diagrams.
128 - M. H. Hettler 1999
We recently introduced the dynamical cluster approximation(DCA), a new technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean field approximation while preserving causality. The technique i s based on an iterative self-consistency scheme on a finite size periodic cluster. The dynamical mean field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, $Phi$-derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a Quantum Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the CDW transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.
We comparatively study the excitonic insulator state in the extended Falicov-Kimball model (EFKM, a spinless two-band model) on the two-dimensional square lattice using the variational cluster approximation (VCA) and the cluster dynamical impurity ap proximation (CDIA). In the latter, the particle-bath sites are included in the reference cluster to take into account the particle-number fluctuations in the correlation sites. We thus calculate the particle-number distribution, order parameter, ground-state phase diagram, anomalous Greens function, and pair coherence length, thereby demonstrating the usefulness of the CDIA in the discussion of the excitonic condensation in the EFKM.
We propose an approach for the ab initio calculation of materials with strong electronic correlations which is based on all local (fully irreducible) vertex corrections beyond the bare Coulomb interaction. It includes the so-called GW and dynamical m ean field theory and important non-local correlations beyond, with a computational effort estimated to be still manageable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا