ترغب بنشر مسار تعليمي؟ اضغط هنا

Feedback and Recycled Wind Accretion: Assembling the z=0 Galaxy Mass Function

255   0   0.0 ( 0 )
 نشر من قبل Benjamin Oppenheimer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyse cosmological hydrodynamic simulations that include observationally-constrained prescriptions for galactic outflows. If these simulated winds accurately represent winds in the real Universe, then material previously ejected in winds provides the dominant source of gas infall for new star formation at redshifts z<1. This recycled wind accretion, or wind mode, provides a third physically distinct accretion channel in addition to the hot and cold modes emphasised in recent theoretical studies. Because of the interaction between outflows and gas in and around halos, the recycling timescale of wind material (t_rec) is shorter in higher-mass systems, which reside in denser gaseous environments. In these simulations, this differential recycling plays a central role in shaping the present-day galaxy stellar mass function (GSMF). If we remove all particles that were ever ejected in a wind, then the predicted GSMFs are much steeper than observed; galaxy masses are suppressed both by the direct removal of gas and by the hydrodynamic heating of their surroundings, which reduces subsequent infall. With wind recycling included, the simulation that incorporates our favoured momentum-driven wind scalings reproduces the observed GSMF for stellar masses 10^9 < M < 5x10^10 Msolar. At higher masses, wind recycling leads to excessive galaxy masses and excessive star formation rates relative to observations. In these massive systems, some quenching mechanism must suppress the re-accretion of gas ejected from star-forming galaxies. In short, as has long been anticipated, the form of the GSMF is governed by outflows; the unexpected twist here for our simulated winds is that it is not primarily the ejection of material but how the ejected material is re-accreted that governs the GSMF.

قيم البحث

اقرأ أيضاً

We present a weak gravitational lensing analysis of supergroup SG1120$-$1202, consisting of four distinct X-ray-luminous groups, that will merge to form a cluster comparable in mass to Coma at $z=0$. These groups lie within a projected separation of 1 to 4 Mpc and within $Delta v=550$ km s$^{-1}$ and form a unique protocluster to study the matter distribution in a coalescing system. Using high-resolution {em HST}/ACS imaging, combined with an extensive spectroscopic and imaging data set, we study the weak gravitational distortion of background galaxy images by the matter distribution in the supergroup. We compare the reconstructed projected density field with the distribution of galaxies and hot X-ray emitting gas in the system and derive halo parameters for the individual density peaks. We show that the projected mass distribution closely follows the locations of the X-ray peaks and associated brightest group galaxies. One of the groups that lies at slightly lower redshift ($zapprox 0.35$) than the other three groups ($zapprox 0.37$) is X-ray luminous, but is barely detected in the gravitational lensing signal. The other three groups show a significant detection (up to $5 sigma$ in mass), with velocity dispersions between $355^{+55}_{-70}$ and $530^{+45}_{-55}$ km s$^{-1}$ and masses between $0.8^{+0.4}_{-0.3} times 10^{14}$ and $1.6^{+0.5}_{-0.4}times 10^{14} h^{-1} M_{odot}$, consistent with independent measurements. These groups are associated with peaks in the galaxy and gas density in a relatively straightforward manner. Since the groups show no visible signs of interaction, this supports the picture that we are catching the groups before they merge into a cluster.
We present the results of a new search for bright star-forming galaxies at z ~ 7 within the UltraVISTA DR2 and UKIDSS UDS DR10 data, which together provide 1.65 sq deg of near-infrared imaging with overlapping optical and Spitzer data. Using a full p hoto-z analysis to identify high-z galaxies and reject contaminants, we have selected a sample of 34 luminous (-22.7 < M_UV < -21.2) galaxies with 6.5 < z < 7.5. Crucially, the deeper imaging provided by UltraVISTA DR2 confirms all of the robust objects previously uncovered by Bowler et al. (2012), validating our selection technique. Our sample includes the most massive galaxies known at z ~ 7, with M_* ~ 10^{10} M_sun, and the majority are resolved, consistent with larger sizes (r_{1/2} ~ 1 - 1.5 kpc) than displayed by less massive galaxies. From our final sample, we determine the form of the bright end of the rest-frame UV galaxy luminosity function (LF) at z ~ 7, providing strong evidence that the bright end of the z = 7 LF does not decline as steeply as predicted by the Schechter function fitted to fainter data. We consider carefully, and exclude the possibility that this is due to either gravitational lensing, or significant contamination of our galaxy sample by AGN. Rather, our results favour a double power-law form for the galaxy LF at high z, or, more interestingly, a LF which simply follows the form of the dark-matter halo mass function at bright magnitudes. This suggests that the physical mechanism which inhibits star-formation activity in massive galaxies (i.e. AGN feedback or some other form of `mass quenching) has yet to impact on the observable galaxy LF at z ~ 7, a conclusion supported by the estimated masses of our brightest galaxies which have only just reached a mass comparable to the critical `quenching mass of M_* = 10 ^{10.2} M_sun derived from studies of the mass function of star-forming galaxies at lower z.
We investigate how different galaxy properties - luminosities in u, g, r, J, K-bands, stellar mass, star formation rate and specific star formation rate trace the environment in the local universe. We also study the effect of survey flux limits on ga laxy clustering measurements. We measure the two-point correlation function (2pCF) and marked correlation functions (MCFs) using the aforementioned properties as marks. We use nearly stellar-mass-complete galaxy sample in the redshift range 0.1 < z < 0.16 from the Galaxy And Mass Assembly (GAMA) survey with a flux limit of r < 19.8. Further, we impose a brighter flux limit of r < 17.8 to our sample and repeat the measurements to study how this affects galaxy clustering analysis. We compare our results to measurements from the Sloan Digital Sky Survey (SDSS) with flux limits of r < 17.8 and r < 16.8. We show that the stellar mass is the best tracer of galaxy environment, the K-band luminosity being a good substitute, although such a proxy sample misses close pairs of evolved, red galaxies. We also confirm that the u-band luminosity is a good, but not a perfect proxy of star formation rate in the context of galaxy clustering. We observe an effect of the survey flux limit on clustering studies - samples with a higher flux limit (smaller magnitude) miss some information about close pairs of starburst galaxies.
We perform a sequence of 3D magnetohydrodynamic (MHD) simulations of the outflow-core interaction for a massive protostar forming via collapse of an initial cloud core of $60~{M_odot}$. This allows us to characterize the properties of disk wind drive n outflows from massive protostars, which can allow testing of different massive star formation theories. It also enables us to assess quantitatively the impact of outflow feedback on protostellar core morphology and overall star formation efficiency. We find that the opening angle of the flow increases with increasing protostellar mass, in agreement with a simple semi-analytic model. Once the protostar reaches $sim24~{M_odot}$ the outflows opening angle is so wide that it has blown away most of the envelope, thereby nearly ending its own accretion. We thus find an overall star formation efficiency of $sim50%$, similar to that expected from low-mass protostellar cores. Our simulation results therefore indicate that the MHD disk wind outflow is the dominant feedback mechanism for helping to shape the stellar initial mass function from a given prestellar core mass function.
106 - F. Pozzi , F. Calura , G. Zamorani 2019
We derive for the first time the dust mass function (DMF) in a wide redshift range, from z~0.2 up to z~2.5. In order to trace the dust emission, we start from a far-IR (160-um) Herschel selected catalogue in the COSMOS field. We estimate the dust mas ses by fitting the far-IR data (lam_rest>50um) with a modified black body function and we present a detailed analysis to take into account the incompleteness in dust masses from a far-IR perspective. By parametrizing the observed DMF with a Schechter function in the redshift range 0.1<z<0.25, where we are able to sample faint dust masses, we measure a steep slope (alpha~1.48), as found by the majority of works in the Local Universe. We detect a strong dust mass evolution, with M_d^star at z~2.5 almost one dex larger than in the local Universe, combined with a decrease in their number density. Integrating our DMFs we estimate the dust mass density (DMD), finding a broad peak at z~1, with a decrease by a factor of ~3 towards z~0 and z~2.5. In general, the trend found for the DMD mostly agrees with the derivation of Driver et al. (2018), another DMD determination based also on far-IR detections, and with other measures based on indirect tracers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا