ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpretation of Strong Short-Term Central Perturbations in the Light Curves of Moderate-Magnification Microlensing Events

137   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

To improve the planet detection efficiency, current planetary microlensing experiments are focused on high-magnification events searching for planetary signals near the peak of lensing light curves. However, it is known that central perturbations can also be produced by binary companions and thus it is important to distinguish planetary signals from those induced by binary companions. In this paper, we analyze the light curves of microlensing events OGLE-2007-BLG-137/MOA-2007-BLG-091, OGLE-2007-BLG-355/MOA-2007-BLG-278, and MOA-2007-BLG-199/OGLE-2007-BLG-419, for all of which exhibit short-term perturbations near the peaks of the light curves. From detailed modeling of the light curves, we find that the perturbations of the events are caused by binary companions rather than planets. From close examination of the light curves combined with the underlying physical geometry of the lens system obtained from modeling, we find that the short time-scale caustic-crossing feature occurring at a low or a moderate base magnification with an additional secondary perturbation is a typical feature of binary-lens events and thus can be used for the discrimination between the binary and planetary interpretations.



قيم البحث

اقرأ أيضاً

159 - J.-Y. Choi , I.-G. Shin , C. Han 2012
High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the basically different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for 2 high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011-BLG-336. For OGLE-2011-BLG-0526, the $chi^2$ difference between the planetary and binary model is $sim$ 3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with $Delta chi^2 sim$ 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that 2 events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common.
A planetary microlensing signal is generally characterized by a short-term perturbation to the standard single lensing light curve. A subset of binary-source events can produce perturbations that mimic planetary signals, thereby introducing an ambigu ity between the planetary and binary-source interpretations. In this paper, we present analysis of the microlensing event MOA-2012-BLG-486, for which the light curve exhibits a short-lived perturbation. Routine modeling not considering data taken in different passbands yields a best-fit planetary model that is slightly preferred over the best-fit binary-source model. However, when allowed for a change in the color during the perturbation, we find that the binary-source model yields a significantly better fit and thus the degeneracy is clearly resolved. This event not only signifies the importance of considering various interpretations of short-term anomalies, but also demonstrates the importance of multi-band data for checking the possibility of false-positive planetary signals.
We present the analysis of four candidate short duration binary microlensing events from the 2006-2007 MOA Project short event analysis. These events were discovered as a byproduct of an analysis designed to find short timescale single lens events th at may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which stellar host is only detected through binary microlensing effects. The mass ratio and separation are q = 4.9 +- 1.4 x 10^{-3} and s = 2.10 +- 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m_p = 3.7 +- 2.1 M_{Jup}, and orbits a star of M_* = 0.75{+0.33 -0.41} M_solar at a semi-major axis of a = 8.3 {+4.5 -2.7} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide separation planets with a efficiency at least as high as that for isolated planets, then we can set limits on the distribution on planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. (2011) consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semi-major axis is > 30 AU.
In Astronomy, the brightness of a source is typically expressed in terms of magnitude. Conventionally, the magnitude is defined by the logarithm of the received flux. This relationship is known as the Pogson formula. For received flux with a small si gnal to noise ratio (S/N), however, the formula gives a large magnitude error. We investigate whether the use of Inverse Hyperbolic Sine function (after this referred to as the Asinh magnitude) in the modified formulae could allow for an alternative calculation of magnitudes for small S/N flux, and whether the new approach is better for representing the brightness of that region. We study the possibility of increasing the detection level of gravitational microlensing using 40 selected microlensing light curves from 2013 and 2014 season and by using the Asinh magnitude. The photometric data of the selected events is obtained from the Observational Gravitational Lensing Experiment (OGLE). We found that the utilization of the Asinh magnitude makes the events brighter compared to using the logarithmic magnitude, with an average of about $3.42 times10^{-2}$ magnitude and the average of the difference of error between the logarithmic and the Asinh magnitude is about $2.21 times10^{-2}$ magnitude. The microlensing events, OB 140847 and OB 140885 are found to have the largest difference values among the selected events. Using a Gaussian fit to find the peak for OB140847 and OB140885, we conclude statistically that the Asinh magnitude gives better mean squared values of the regression and narrower residual histograms than the Pogson magnitude. Based on these results, we also attempt to propose a limit of magnitude value from which the use of the Asinh magnitude is optimal for small S/N data.
The microlensing event OGLE-2011-BLG-0417 is an exceptionally bright lens binary that was predicted to present radial velocity variation at the level of several km/s. Pioneer radial velocity follow-up observations with the UVES spectrograph at the ES O - VLT of this system clearly ruled out the large radial velocity variation, leaving a discrepancy between the observation and the prediction. In this paper, we further characterise the microlensing system by analysing its spectral energy distribution (SED) derived using the UVES spectrum and new observations with the ARCoIRIS (CTIO) near-infrared spectrograph and the Keck adaptive optics instrument NIRC2 in the J, H, and Ks bands. We determine the mass and distance of the stars independently from the microlensing modelling. We find that the SED is compatible with a giant star in the Galactic bulge and a foreground star with a mass of 0.94+/-0.09Msun at a distance of 1.07+/-0.24kpc. We find that this foreground star is likely the lens. Its parameters are not compatible with the ones previously reported in the literature (0.52+/-0.04Msun at 0.95+/-0.06kpc), based on the microlensing light curve. A thoughtful re-analysis of the microlensing event is mandatory to fully understand the reason of this new discrepancy. More importantly, this paper demonstrates that spectroscopic follow-up observations of microlensing events are possible and provide independent constraints on the parameters of the lens and source stars, hence breaking some degeneracies in the analysis. UV-to-NIR low-resolution spectrographs like X-SHOOTER (ESO - VLT) could substantially contribute to this follow-up efforts, with magnitude limits above all microlensing events detected so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا