ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Phases of Bose-Hubbard Model in Optical Superlattices

275   0   0.0 ( 0 )
 نشر من قبل Bo-Lun Chen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we analyze the quantum phases of multiple component Bose-Hubbard model in optical superlattices, using a mean-field method, the decoupling approximation. We find that the phase diagrams exhibit complected patterns and regions with various Charge Density Wave (CDW) for both one- and two- component cases. We also analyze the effective spin dynamics for the two-component case in strong-coupling region at unit filling, and show the possible existence of a Spin Density Wave (SDW) order.



قيم البحث

اقرأ أيضاً

We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the groun d-state phase diagram and shows that, besides dimerized Mott and density-wave insulating phases, an intermediate symmetry-protected topological Haldane insulator emerges at weak Coulomb interactions for filling factor one, which disappears, however, when the dimerization becomes too large. Analyzing the critical behavior of the model, we prove that the phase boundaries of the Haldane phase to Mott insulator and density-wave states belong to the Gaussian and Ising universality classes with central charges $c=1$ and $c=1/2$, respectively, and merge in a tricritical point. Interestingly we can demonstrate a direct Ising quantum phase transition between the dimerized Mott and density-wave phases above the tricritical point. The corresponding transition line terminates at a critical end point that belongs to the universality class of the dilute Ising model with $c=7/10$. At even stronger Coulomb interactions the transition becomes first order.
We study the system of multi-body interacting bosons on a two dimensional optical lattice and analyze the formation of bound bosonic pairs in the context of the Bose-Hubbard model. Assuming a repulsive two-body interaction we obtain the signatures of pair formation in the regions between the Mott insulator lobes of the phase diagram for different choices of higher order local interactions. Considering the most general Bose-Hubbard model involving local multi-body interactions we investigate the ground state properties utilizing the cluster mean-field theory approach and further confirm the results by means of sophisticated infinite Projected Entangled Pair States calculations. By using various order parameters, we show that the choice of higher-order interaction can lead to pair superfluid phase in the system between two different Mott lobes. We also analyze the effect of temperature and density-dependent tunneling to establish the stability of the PSF phase.
We study the odd integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a novel universality class, with critical exponents associated with the divergence of the correlation length $ u approx 2/3$ and the order parameter susceptibility $gamma approx 1/2$. We solve the effective spin model exactly using the density matrix renormalization group, and compare with both a large-$S$ classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.
136 - T. Nakafuji , I. Ichinose 2017
Motivated by the recent experimental realization of the Haldane model by ultracold fermions in an optical lattice, we investigate phase diagrams of the hard-core Bose-Hubbard model on a honeycomb lattice. This model is closely related with a spin-1/2 antiferromagnetic (AF) quantum spin model. Nearest-neighbor (NN) hopping amplitude is positive and it prefers an AF configurations of phases of Bose-Einstein condensates. On the other hand, an amplitude of the next-NN hopping depends on an angle variable as in the Haldane model. Phase diagrams are obtained by means of an extended path-integral Monte-Carlo simulations. Besides the AF state, a 120$^o$-order state, there appear other phases including a Bose metal in which no long-range orders exist.
145 - D. Nagy , G. Konya , P. Domokos 2018
We investigate the quantum measurement noise effects on the dynamics of an atomic Bose lattice gas inside an optical resonator. We describe the dynamics by means of a hybrid model consisting of a Bose--Hubbard Hamiltonian for the atoms and a Heisenbe rg--Langevin equation for the lossy cavity field mode. We assume that the atoms are prepared initially in the ground state of the lattice Hamiltonian and then start to interact with the cavity mode. We show that the cavity field fluctuations originating from the dissipative outcoupling of photons from the resonator lead to vastly different effects in the different possible ground state phases, i.e., the superfluid, the supersolid, the Mott- and the charge-density-wave phases. In the former two phases with the presence of a superfluid wavefunction, the quantum measurement noise appears as a driving term leading to excess noise depletion of the ground state. The time scale for the system to leave the ground scale is determined analytically. For the latter two incompressible phases, the quantum noise results in the fluctuation of the chemical potential. We derive an analytical expression for the corresponding broadening of the quasiparticle resonances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا