ﻻ يوجد ملخص باللغة العربية
Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]
We perform a joint analysis of intrinsic alignments and cosmology using tomographic weak lensing, galaxy clustering and galaxy-galaxy lensing measurements from Year 1 (Y1) of the Dark Energy Survey. We define early- and late-type subsamples, which ar
The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions a
We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of starforming galaxies at 0.25 < z < 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric propert
We use state-of-art measurements of the galaxy luminosity function (LF) at z=6, 7 and 8 to derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light axion dark matter (ULADM) models alternative to the cold dark mat
We compare the maximal abundance of massive systems predicted in different dynamical dark energy (DDE) models at high redshifts z = 4-7 with the measured abundance of the most massive galaxies observed to be already in place at such redshifts. The ai