ترغب بنشر مسار تعليمي؟ اضغط هنا

The WiggleZ Dark Energy Survey: Direct constraints on blue galaxy intrinsic alignments at intermediate redshifts

210   0   0.0 ( 0 )
 نشر من قبل Rachel Mandelbaum
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Correlations between the intrinsic shapes of galaxy pairs, and between the intrinsic shapes of galaxies and the large-scale density field, may be induced by tidal fields. These correlations, which have been detected at low redshifts (z<0.35) for bright red galaxies in the Sloan Digital Sky Survey (SDSS), and for which upper limits exist for blue galaxies at z~0.1, provide a window into galaxy formation and evolution, and are also an important contaminant for current and future weak lensing surveys. Measurements of these alignments at intermediate redshifts (z~0.6) that are more relevant for cosmic shear observations are very important for understanding the origin and redshift evolution of these alignments, and for minimising their impact on weak lensing measurements. We present the first such intermediate-redshift measurement for blue galaxies, using galaxy shape measurements from SDSS and spectroscopic redshifts from the WiggleZ Dark Energy Survey. Our null detection allows us to place upper limits on the contamination of weak lensing measurements by blue galaxy intrinsic alignments that, for the first time, do not require significant model-dependent extrapolation from the z~0.1 SDSS observations. Also, combining the SDSS and WiggleZ constraints gives us a long redshift baseline with which to constrain intrinsic alignment models and contamination of the cosmic shear power spectrum. Assuming that the alignments can be explained by linear alignment with the smoothed local density field, we find that a measurement of sigma_8 in a blue-galaxy dominated, CFHTLS-like survey would be contaminated by at most +/-0.02 (95% confidence level, SDSS and WiggleZ) or +/-0.03 (WiggleZ alone) due to intrinsic alignments. [Abridged]



قيم البحث

اقرأ أيضاً

We perform a joint analysis of intrinsic alignments and cosmology using tomographic weak lensing, galaxy clustering and galaxy-galaxy lensing measurements from Year 1 (Y1) of the Dark Energy Survey. We define early- and late-type subsamples, which ar e found to pass a series of systematics tests, including for spurious photometric redshift error and point spread function correlations. We analyse these split data alongside the fiducial mixed Y1 sample using a range of intrinsic alignment models. In a fiducial Nonlinear Alignment Model (NLA) analysis, assuming a flat lcdm~cosmology, we find a significant difference in intrinsic alignment amplitude, with early-type galaxies favouring $A_mathrm{IA} = 2.38^{+0.32}_{-0.31}$ and late-type galaxies consistent with no intrinsic alignments at $0.05^{+0.10}_{-0.09}$. We find weak evidence of a diminishing alignment amplitude at higher redshifts in the early-type sample. The analysis is repeated using a number of extended model spaces, including a physically motivated model that includes both tidal torquing and tidal alignment mechanisms. In multiprobe likelihood chains in which cosmology, intrinsic alignments in both galaxy samples and all other relevant systematics are varied simultaneously, we find the tidal alignment and tidal torquing parts of the intrinsic alignment signal have amplitudes $A_1 = 2.66 ^{+0.67}_{-0.66}$, $A_2=-2.94^{+1.94}_{-1.83}$, respectively, for early-type galaxies and $A_1 = 0.62 ^{+0.41}_{-0.41}$, $A_2 = -2.26^{+1.30}_{-1.16}$ for late-type galaxies. In the full (mixed) Y1 sample the best constraints are $A_1 = 0.70 ^{+0.41}_{-0.38}$, $A_2 = -1.36 ^{+1.08}_{-1.41}$. For all galaxy splits and IA models considered, we report cosmological parameter constraints that are consistent with the results of Troxel et al. (2017) and Dark Energy Survey Collaboration (2017).
The absolute neutrino mass scale is currently unknown, but can be constrained from cosmology. The WiggleZ high redshift star-forming blue galaxy sample is less sensitive to systematics from non-linear structure formation, redshift-space distortions a nd galaxy bias than previous surveys. We obtain a upper limit on the sum of neutrino masses of 0.60eV (95% confidence) for WiggleZ+Wilkinson Microwave Anisotropy Probe. Combining with priors on the Hubble Parameter and the baryon acoustic oscillation scale gives an upper limit of 0.29eV, which is the strongest neutrino mass constraint derived from spectroscopic galaxy redshift surveys.
We study the evolution of galaxy populations around the spectroscopic WiggleZ sample of starforming galaxies at 0.25 < z < 0.75 using the photometric catalog from the Second Red-Sequence Cluster Survey (RCS2). We probe the optical photometric propert ies of the net excess neighbor galaxies. The key concept is that the marker galaxies and their neighbors are located at the same redshift, providing a sample of galaxies representing a complete census of galaxies in the neighborhood of star-forming galaxies. The results are compared with those using the RCS WiggleZ Spare-Fibre (RCS-WSF) sample as markers, representing galaxies in cluster environments at 0.25 < z < 0.45. By analyzing the stacked color-color properties of the WiggleZ neighbor galaxies, we find that their optical colors are not a strong function of indicators of star-forming activities such as EW([OII]) or GALEX NUV luminoisty of the markers. The galaxies around the WiggleZ markers exhibit a bimodal distribution on the color-magnitude diagram, with most of them located in the blue cloud. The optical galaxy luminosity functions (GLF) of the blue neighbor galaxies have a faint-end slope alpha of sim -1.3, similar to that for galaxies in cluster environments drawn from the RCS-WSF sample. The faint-end slope of the GLF for the red neighbors, however, is sim -0.4, significantly shallower than the sim -0.7 found for those in cluster environments. This suggests that the build-up of the faint-end of the red sequence in cluster environments is in a significantly more advanced stage than that in the star-forming and lower galaxy density WiggleZ neighborhoods. We find that the red galaxy fraction (fred) around the star-forming WiggleZ galaxies has similar values from z sim 0.3 to z sim 0.6 with fred sim 0.28, but drops to fred sim 0.20 at z > sim0.7. This change of fred with redshift suggests that (and more...)
We use state-of-art measurements of the galaxy luminosity function (LF) at z=6, 7 and 8 to derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light axion dark matter (ULADM) models alternative to the cold dark mat ter (CDM) paradigm. To this purpose we have run a suite of high-resolution N-body simulations to accurately characterise the low mass-end of the halo mass function and derive DM model predictions of the high-z luminosity function. In order to convert halo masses into UV-magnitudes we introduce an empirical approach based on halo abundance matching which allows us to model the LF in terms of the amplitude and scatter of the ensemble average star formation rate halo mass relation of each DM model, $langle {rm SFR}({rm M_{ h}},z)rangle$. We find that independent of the DM scenario the average SFR at fixed halo mass increases from z=6 to 8, while the scatter remains constant. At halo mass ${rm M_{h}}gtrsim 10^{12},{rm M}_odot$ h$^{-1}$ the average SFR as function of halo mass follows a double power law trend that is common to all models, while differences occur at smaller masses. In particular, we find that models with a suppressed low-mass halo abundance exhibit higher SFR compared to the CDM results. Using deviance statistics we obtain a lower limit on the WDM thermal relic particle mass, $m_{rm WDM}gtrsim 1.5$ keV at $2sigma$. In the case of LFDM models, the phase transition redshift parameter is bounded to $z_tgtrsim 8cdot 10^5$ at $2sigma$. We find ULADM best-fit models with axion mass $m_agtrsim 1.6cdot 10^{-22}$ eV to be well within $2sigma$ of the deviance statistics. We remark that measurements at $z=6$ slightly favour a flattening of the LF at faint UV-magnitudes. This tends to prefer some of the non-CDM models in our simulation suite, although not at a statistically significant level to distinguish them from CDM.
We compare the maximal abundance of massive systems predicted in different dynamical dark energy (DDE) models at high redshifts z = 4-7 with the measured abundance of the most massive galaxies observed to be already in place at such redshifts. The ai m is to derive constraints for the evolution of the dark energy equation of state parameter w which are complementary to existing probes. We adopt the standard parametrization for the DDE evolution in terms of the local value w_0 and of the look-back time derivative w_a of the equation of state. We derive constraints on combinations (w_0, w_a) in the different DDE models by using three different, independent probes: (i) the observed stellar mass function of massive objects at z = 6 derived from the CANDELS survey; (ii) the estimated volume density of massive halos derived from the observation of massive, star-forming galaxies detected in the submillimeter range at z = 4; (iii) The rareness of he most massive system (estimated gas mass exceeding 3 10^11 M_sun) observed to be in place at z = 7, a far-infrared-luminous object recently detected in the South Pole Telescope (SPT) survey. Finally, we show that the combination of our results from the three above probes excludes a sizable fraction of the DDE parameter space w_a > -3/4 - (w_0 + 3/2) presently allowed (or even favored) by existing probes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا