ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts

84   0   0.0 ( 0 )
 نشر من قبل Pier Stefano Corasaniti
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use state-of-art measurements of the galaxy luminosity function (LF) at z=6, 7 and 8 to derive constraints on warm dark matter (WDM), late-forming dark matter (LFDM) and ultra-light axion dark matter (ULADM) models alternative to the cold dark matter (CDM) paradigm. To this purpose we have run a suite of high-resolution N-body simulations to accurately characterise the low mass-end of the halo mass function and derive DM model predictions of the high-z luminosity function. In order to convert halo masses into UV-magnitudes we introduce an empirical approach based on halo abundance matching which allows us to model the LF in terms of the amplitude and scatter of the ensemble average star formation rate halo mass relation of each DM model, $langle {rm SFR}({rm M_{ h}},z)rangle$. We find that independent of the DM scenario the average SFR at fixed halo mass increases from z=6 to 8, while the scatter remains constant. At halo mass ${rm M_{h}}gtrsim 10^{12},{rm M}_odot$ h$^{-1}$ the average SFR as function of halo mass follows a double power law trend that is common to all models, while differences occur at smaller masses. In particular, we find that models with a suppressed low-mass halo abundance exhibit higher SFR compared to the CDM results. Using deviance statistics we obtain a lower limit on the WDM thermal relic particle mass, $m_{rm WDM}gtrsim 1.5$ keV at $2sigma$. In the case of LFDM models, the phase transition redshift parameter is bounded to $z_tgtrsim 8cdot 10^5$ at $2sigma$. We find ULADM best-fit models with axion mass $m_agtrsim 1.6cdot 10^{-22}$ eV to be well within $2sigma$ of the deviance statistics. We remark that measurements at $z=6$ slightly favour a flattening of the LF at faint UV-magnitudes. This tends to prefer some of the non-CDM models in our simulation suite, although not at a statistically significant level to distinguish them from CDM.



قيم البحث

اقرأ أيضاً

We compare the maximal abundance of massive systems predicted in different dynamical dark energy (DDE) models at high redshifts z = 4-7 with the measured abundance of the most massive galaxies observed to be already in place at such redshifts. The ai m is to derive constraints for the evolution of the dark energy equation of state parameter w which are complementary to existing probes. We adopt the standard parametrization for the DDE evolution in terms of the local value w_0 and of the look-back time derivative w_a of the equation of state. We derive constraints on combinations (w_0, w_a) in the different DDE models by using three different, independent probes: (i) the observed stellar mass function of massive objects at z = 6 derived from the CANDELS survey; (ii) the estimated volume density of massive halos derived from the observation of massive, star-forming galaxies detected in the submillimeter range at z = 4; (iii) The rareness of he most massive system (estimated gas mass exceeding 3 10^11 M_sun) observed to be in place at z = 7, a far-infrared-luminous object recently detected in the South Pole Telescope (SPT) survey. Finally, we show that the combination of our results from the three above probes excludes a sizable fraction of the DDE parameter space w_a > -3/4 - (w_0 + 3/2) presently allowed (or even favored) by existing probes.
If the dark matter (DM) were composed of axions, then structure formation in the Universe would be suppressed below the axion Jeans scale. Using an analytic model for the halo mass function of a mixed DM model with axions and cold dark matter, combin ed with the abundance-matching technique, we construct the UV-luminosity function. Axions suppress high-$z$ galaxy formation and the UV-luminosity function is truncated at a faintest limiting magnitude. From the UV-luminosity function, we predict the reionization history of the universe and find that axion DM causes reionization to occur at lower redshift. We search for evidence of axions using the Hubble Ultra Deep Field UV-luminosity function in the redshift range $z=6$-$10$, and the optical depth to reionization, $tau$, as measured from cosmic microwave background polarization. All probes we consider consistently exclude $m_alesssim 10^{-23}text{ eV}$ from contributing more than half of the DM, with our strongest constraint ruling this model out at more than $8sigma$ significance. In conservative models of reionization a dominant component of DM with $m_a=10^{-22}text{ eV}$ is in $3sigma$ tension with the measured value of $tau$, putting pressure on an axion solution to the cusp-core problem. Tension is reduced to $2sigma$ for the axion contributing only half of the DM. A future measurement of the UV-luminosity function in the range $z=10$-$13$ by JWST would provide further evidence for or against $m_a=10^{-22}text{ eV}$. Probing still higher masses of $m_a=10^{-21}text{ eV}$ will be possible using future measurements of the kinetic Sunyaev-Zeldovich effect by Advanced ACTPol to constrain the time and duration of reionization.
A small fraction of thermalized dark radiation that transitions into cold dark matter (CDM) between big bang nucleosynthesis and matter-radiation equality can account for the entire dark matter relic density. Because of its transition from dark radia tion, late-forming dark matter (LFDM) suppresses the growth of linear matter perturbations and imprints the oscillatory signatures of dark radiation perturbations on small scales. The cutoff scale in the linear matter power spectrum is set by the redshift $z_T$ of the phase transition; tracers of small-scale structure can therefore be used to infer the LFDM formation epoch. Here, we use a forward model of the Milky Way (MW) satellite galaxy population to address the question: How late can dark matter form? For dark radiation with strong self-interactions, which arises in theories of neutrinolike LFDM, we report $z_{T}>5.5times 10^6$ at $95%$ confidence based on the abundance of known MW satellite galaxies. This limit rigorously accounts for observational incompleteness corrections, marginalizes over uncertainties in the connection between dwarf galaxies and dark matter halos, and improves upon galaxy clustering and Lyman-$alpha$ forest constraints by nearly an order of magnitude. We show that this limit can also be interpreted as a lower bound on $z_T$ for LFDM that free-streams prior to its phase transition, although dedicated simulations will be needed to analyze this case in detail. Thus, dark matter created by a transition from dark radiation must form no later than one week after the big bang.
180 - D. Sobral 2009
New results are presented, as part of the Hi-z Emission Line Survey (HiZELS), from the largest area survey to date (1.4 sq.deg) for Lyman-alpha emitters (LAEs) at z~9. The survey, which is primarily targeting H-alpha emitters at z<3, uses the Wide Fi eld CAMera on the United Kingdom Infrared Telescope and a custom narrow-band filter in the J band and reaches a Lyman-alpha luminosity limit of ~10^43.8 erg/s over a co-moving volume of 1.12x10^6 Mpc^3 at z=8.96+-0.06. Only 2 candidates were found out of 1517 line emitters and those were rejected as LAEs after follow-up observations. The limit on the space density of bright LAEs is improved by 3 orders of magnitude, consistent with suppression of the bright end of the Lyman-alpha luminosity function beyond z~6. Combined with upper limits from smaller but deeper surveys, this rules out some of the most extreme models for high-redshift LAEs. The potential contamination of future narrow-band Lyman-alpha surveys at z>7 by Galactic brown dwarf stars is also examined, leading to the conclusion that such contamination may well be significant for searches at 7.7<z<8.0, 9.1<z<9.5 and 11.7 < z < 12.2.
We report the discovery of 11 very faint (r< 23), low surface brightness ({mu}_r< 27 mag/arcsec^2) dwarf galaxies in one deep field in the Virgo cluster, obtained by the prime focus cameras (LBC) at the Large Binocular Telescope (LBT). These extend o ur previous sample to reach a total number of 27 galaxies in a field of just of 0.17 deg^2 located at a median distance of 390 kpc from the cluster center. Their association with the Virgo cluster is supported by their separate position in the central surface brightness - total magnitude plane with respect to the background galaxies of similar total magnitude. For a significant fraction (26%) of the sample the association to the cluster is confirmed by spectroscopic follow-up. We show that the mere abundance of satellite galaxies corresponding to our observed number in the target field provides extremely tight constraints on Dark Matter models with suppressed power spectrum compared to the Cold Dark Matter case, independently of the galaxy luminosity distribution. In particular, requiring the observed number of satellite galaxies not to exceed the predicted abundance of Dark Matter sub-halos yields a limit m_X >3 keV at 1-{sigma} and m_X > 2.3 keV at 2-{sigma} confidence level for the mass of thermal Warm Dark Matter particles. Such a limit is competitive with other limits set by the abundance of ultra-faint satellite galaxies in the Milky Way, is completely independent of baryon physics involved in galaxy formation, and has the potentiality for appreciable improvements with next observations. We extend our analysis to Dark Matter models based on sterile neutrinos, showing that our observations set tight constraints on the combination of sterile neutrino mass m_{ u} and mixing parameter sin^2(2{theta}). We discuss the robustness of our results with respect to systematics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا