ﻻ يوجد ملخص باللغة العربية
The cyclotomic Birman-Murakami-Wenzl (BMW) algebras B_n^k, introduced by R. Haring-Oldenburg, are a generalisation of the BMW algebras associated with the cyclotomic Hecke algebras of type G(k,1,n) (aka Ariki-Koike algebras) and type B knot theory. In this paper, we prove the algebra is free and of rank k^n (2n-1)!! over ground rings with parameters satisfying so-called admissibility conditions. These conditions are necessary in order for these results to hold and originally arise from the representation theory of B_2^k, which is analysed by the authors in a previous paper. Furthermore, we obtain a geometric realisation of B_n^k as a cyclotomic version of the Kauffman tangle algebra, in terms of affine n-tangles in the solid torus, and produce explicit bases that may be described both algebraically and diagrammatically. The admissibility conditions are the most general offered in the literature for which these results hold; they are necessary and sufficient for all results for general n.
Inspired by the work [IMOg2], in this note, we prove that the pairwise orthogonal primitive idempotents of generic cyclotomic Birman-Murakami-Wenzl algebras can be constructed by consecutive evaluations of a certain rational function. In the appendix
----- Please see the pdf file for the actual abstract and important remarks, which could not be put here due to the arXiv length restrictions. ----- This thesis presents a study of the cyclotomic BMW (Birman-Murakami-Wenzl) algebras, introduced
Inspired by the work [PA], we establish an explicit algebra isomorphism between the degenerate cyclotomic Yokonuma-Hecke algebra $Y_{r,n}^{d}(q)$ and a direct sum of matrix algebras over tensor products of degenerate cyclotomic Hecke algebras of type
Let $Sc(vL)$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $He_{n,r}$, introduced by Dipper-James-Mathas. In this paper, we consider $v$-decomposition numbers of $Sc(vL)$, namely decomposition numbers with respect to the J
Let $S$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $H_{n,r}$ of rank $n$, introduced by Dipper-James-Mathas. For each $p = (r_1, ..., r_g)$ such that $r_1 + ... + r_g = r$, we define a subalgebra $S^p$ of $S$ and its qu