ﻻ يوجد ملخص باللغة العربية
Let $Sc(vL)$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $He_{n,r}$, introduced by Dipper-James-Mathas. In this paper, we consider $v$-decomposition numbers of $Sc(vL)$, namely decomposition numbers with respect to the Jantzen filtrations of Weyl modules. We prove, as a $v$-analogue of the result obtained by Shoji-Wada, a product formula for $v$-decomposition numbers of $Sc(vL)$, which asserts that certain $v$-decomposition numbers are expressed as a product of $v$-decomposition numbers for various cyclotomic $q$-Schur algebras associated to Ariki-koike algebras $He_{n_i,r_i}$ of smaller rank. Moreover we prove a similar formula for $v$-decomposition numbers of $He_{n,r}$ by using a Schur functor.
Let $S$ be the cyclotomic $q$-Schur algebra associated to the Ariki-Koike algebra $H_{n,r}$ of rank $n$, introduced by Dipper-James-Mathas. For each $p = (r_1, ..., r_g)$ such that $r_1 + ... + r_g = r$, we define a subalgebra $S^p$ of $S$ and its qu
We introduce a Lie algebra $mathfrak{g}_{mathbf{Q}}(mathbf{m})$ and an associative algebra $mathcal{U}_{q,mathbf{Q}}(mathbf{m})$ associated with the Cartan data of $mathfrak{gl}_m$ which is separated into $r$ parts with respect to $mathbf{m}=(m_1, do
In this paper the authors investigate the $q$-Schur algebras of type B that were constructed earlier using coideal subalgebras for the quantum group of type A. The authors present a coordinate algebra type construction that allows us to realize these
We give a necessary and sufficient condition on parameters for Ariki-Koike algebras (resp. cyclotomic q-Schur algebras) to be of finite representation type.
The cyclotomic Birman-Murakami-Wenzl (BMW) algebras B_n^k, introduced by R. Haring-Oldenburg, are a generalisation of the BMW algebras associated with the cyclotomic Hecke algebras of type G(k,1,n) (aka Ariki-Koike algebras) and type B knot theory.