ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field-modulated exciton generation in organic semiconductors: an intermolecular quantum correlation effect

177   0   0.0 ( 0 )
 نشر من قبل Yao Yao
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of both hole and electron transporting materials. A theoretical model considering intermolecular quantum correlation is proposed to demonstrate two fundamental issues: (1) two mechanisms, spin scattering and spin mixing, dominate the two different steps respectively in the process of the magnetic field modulated generation of exciton; (2) the hopping rate of carriers determines the intensity of MEL. Calculation successfully predicts the increase of singlet excitons in low field with little change of triplet exciton population.



قيم البحث

اقرأ أيضاً

We report on a comprehensive experimental and theoretical study of optical third harmonic generation (THG) on the exciton-polariton resonances in the zinc-blende semiconductors GaAs, CdTe, and ZnSe subject to an external magnetic field, representing a topic that had remained unexplored so far. In these crystals, crystallographic THG is allowed in the electric-dipole approximation, so that no strong magnetic-field-induced changes of the THG are expected. Therefore, it comes as a total surprise that we observe a drastic enhancement of the THG intensity by a factor of fifty for the $1s$-exciton-polariton in GaAs in magnetic fields up to 10 T. In contrast, the corresponding enhancement is moderate for CdTe and almost neglectful for ZnSe. In order to explain this strong variation, we develop a microscopic theory accounting for the optical harmonics generation on exciton-polaritons and analyze the THG mechanisms induced by the magnetic field. The calculations show that the increase of THG intensity is dominated by the magnetic field enhancement of the exciton oscillator strength which is particularly strong for GaAs in the studied range of field strengths. The much weaker increase of THG intensity in CdTe and ZnSe is explained by the considerably larger exciton binding energies, leading to a weaker modification of their oscillator strengths by the magnetic field.
Organic semiconductors have generated considerable interest for their potential for creating inexpensive and flexible devices easily processed on a large scale [1-11]. However technological applications are currently limited by the low mobility of th e charge carriers associated with the disorder in these materials [5-8]. Much effort over the past decades has therefore been focused on optimizing the organisation of the material or the devices to improve carrier mobility. Here we take a radically different path to solving this problem, namely by injecting carriers into states that are hybridized to the vacuum electromagnetic field. These are coherent states that can extend over as many as 10^5 molecules and should thereby favour conductivity in such materials. To test this idea, organic semiconductors were strongly coupled to the vacuum electromagnetic field on plasmonic structures to form polaritonic states with large Rabi splittings ca. 0.7 eV. Conductivity experiments show that indeed the current does increase by an order of magnitude at resonance in the coupled state, reflecting mostly a change in field-effect mobility as revealed when the structure is gated in a transistor configuration. A theoretical quantum model is presented that confirms the delocalization of the wave-functions of the hybridized states and the consequences on the conductivity. While this is a proof-of-principle study, in practice conductivity mediated by light-matter hybridized states is easy to implement and we therefore expect that it will be used to improve organic devices. More broadly our findings illustrate the potential of engineering the vacuum electromagnetic environment to modify and to improve properties of materials.
Organic semiconductors exhibit properties of individual molecules and extended crystals simultaneously. The strongly bound excitons they host are typically described in the molecular limit, but excitons can delocalize over many molecules, raising the question of how important the extended crystalline nature is. Using accurate Greens function based methods for the electronic structure and non-perturbative finite difference methods for exciton-vibration coupling, we describe exciton interactions with molecular and crystal degrees of freedom concurrently. We find that the degree of exciton delocalization controls these interactions, with thermally activated crystal phonons predominantly coupling to delocalized states, and molecular quantum fluctuations predominantly coupling to localized states. Based on this picture, we quantitatively predict and interpret the temperature and pressure dependence of excitonic peaks in the acene series of organic semiconductors, which we confirm experimentally, and we develop a simple experimental protocol for probing exciton delocalization. Overall, we provide a unified picture of exciton delocalization and vibrational effects in organic semiconductors, reconciling the complementary views of finite molecular clusters and periodic molecular solids.
Long-range and fast transport of coherent excitons is important for development of high-speed excitonic circuits and quantum computing applications. However, most of these coherent excitons have only been observed in some low-dimensional semiconducto rs when coupled with cavities, as there are large inhomogeneous broadening and dephasing effects on the exciton transport in their native states of the materials. Here, by confining coherent excitons at the 2D quantum limit, we firstly observed molecular aggregation enabled super-transport of excitons in atomically thin two-dimensional (2D) organic semiconductors between coherent states, with a measured a high effective exciton diffusion coefficient of 346.9 cm2/sec at room temperature. This value is one to several orders of magnitude higher than the reported values from other organic molecular aggregates and low-dimensional inorganic materials. Without coupling to any optical cavities, the monolayer pentacene sample, a very clean 2D quantum system (1.2 nm thick) with high crystallinity (J type aggregation) and minimal interfacial states, showed superradiant emissions from the Frenkel excitons, which was experimentally confirmed by the temperature-dependent photoluminescence (PL) emission, highly enhanced radiative decay rate, significantly narrowed PL peak width and strongly directional in-plane emission. The coherence in monolayer pentacene samples was observed to be delocalized over 135 molecules, which is significantly larger than the values (a few molecules) observed from other organic thin films. In addition, the super-transport of excitons in monolayer pentacene samples showed highly anisotropic behaviour. Our results pave the way for the development of future high-speed excitonic circuits, fast OLEDs, and other opto-electronic devices.
261 - Xuewen Fu , Cong Su , Qiang Fu 2013
As device miniaturization approaches the atomic limit, it becomes highly desirable to exploit novel paradigms for tailoring electronic structures and carrier dynamics in materials. Elastic strain can in principle be applied to achieve reversible and fast control of such properties, but it remains a great challenge to create and utilize precisely controlled inhomogeneous deformation in semiconductors. Here, we take a combined experimental and theoretical approach to demonstrate that elastic strain-gradient can be created controllably and reversibly in ZnO micro/nanowires. In particular, we show that the inhomogeneous strain distribution creates an effective field that fundamentally alters the dynamics of the neutral excitons. As the basic principles behind these results are quite generic and applicable to most semiconductors, this work points to a novel route to a wide range of applications in electronics, optoelectronics, and photochemistry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا