ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic beaming and gamma-ray brightness of blazars

320   0   0.0 ( 0 )
 نشر من قبل Tuomas Savolainen
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Savolainen




اسأل ChatGPT حول البحث

We investigate the dependence of gamma-ray brightness of blazars on intrinsic properties of their parsec-scale radio jets and the implication for relativistic beaming. By combining apparent jet speeds derived from high-resolution VLBA images from the MOJAVE program with millimetre-wavelength flux density monitoring data from Metsahovi Radio Observatory, we estimate the jet Doppler factors, Lorentz factors, and viewing angles for a sample of 62 blazars. We study the trends in these quantities between the sources which were detected in gamma-rays by the Fermi Large Area Telescope (LAT) during its first three months of science operations and those which were not detected. The LAT-detected blazars have on average higher Doppler factors than non-LAT-detected blazars, as has been implied indirectly in several earlier studies. We find statistically significant differences in the viewing angle distributions between gamma-ray bright and weak sources. Most interestingly, gamma-ray bright blazars have a distribution of comoving frame viewing angles that is significantly narrower than that of gamma-ray weak blazars and centred roughly perpendicular to the jet axis. The lack of gamma-ray bright blazars at large comoving frame viewing angles can be explained by relativistic beaming of gamma-rays, while the apparent lack of gamma-ray bright blazars at small comoving frame viewing angles, if confirmed with larger samples, may suggest an intrinsic anisotropy or Lorentz factor dependence of the gamma-ray emission.

قيم البحث

اقرأ أيضاً

Fermi has been instrumental in constraining the luminosity function and redshift evolution of gamma-ray bright blazars. This includes limits upon the spectrum and anisotropy of the extragalactic gamma-ray background (EGRB), redshift distribution of n earby Fermi active galactic nuclei (AGN), and the construction of a log(N)-log(S) relation. Based upon these, it has been argued that the evolution of the gamma-ray bright blazar population must be much less dramatic than that of other AGN. However, critical to such claims is the assumption that inverse Compton cascades reprocess emission above a TeV into the Fermi energy range, substantially enhancing the strength of the observed limits. Here we demonstrate that in the absence of such a process, due, e.g., to the presence of virulent plasma beam instabilities that preempt the cascade, a population of TeV-bright blazars that evolve similarly to quasars is consistent with the population of hard gamma-ray blazars observed by Fermi. Specifically, we show that a simple model for the properties and luminosity function is simultaneously able to reproduce their log(N)-log(S) relation, local redshift distribution, and contribution to the EGRB and its anisotropy without any free parameters. Insofar the naturalness of a picture in which the hard gamma-ray blazar population exhibits the strong redshift evolution observed in other tracers of the cosmological history of accretion onto halos is desirable, this lends support for the absence of the inverse Compton cascades and the existence of the beam plasma instabilities.
114 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
The coexistence of Planck and Fermi satellites in orbit has enabled the exploration of the connection between the (sub-)millimeter and gamma-ray emission in a large sample of blazars. We find that the gamma-ray emission and the (sub-)mm luminosities are correlated over five orders of magnitude. However, this correlation is not significant at some frequency bands when simultaneous observations are considered. The most significant statistical correlations, on the other hand, arise when observations are quasi-simultaneous within 2 months. Moreover, we find that sources with an approximate spectral turnover in the middle of the mm-wave regime are more likely to be strong gamma-ray emitters. These results suggest a physical relation between the newly injected plasma components in the jet and the high levels of gamma-ray emission.
Inverse-Compton cascades initiated by energetic gamma rays (E>100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field ( IGMF), and the stringent limits placed upon the unresolved extragalactic gamma-ray background (EGRB) by Fermi has been used to argue against a large number of such objects at high redshifts. However, these are predicated upon the assumption that inverse-Compton scattering is the primary energy-loss mechanism for the ultra-relativistic pairs produced by the annihilation of the energetic gamma rays on extragalactic background light photons. Here we show that for sufficiently bright TeV sources (isotropic-equivalent luminosities >10^{42} erg/s) plasma beam instabilities, specifically the oblique instability, present a plausible mechanism by which the energy of these pairs can be dissipated locally, heating the intergalactic medium. Since these instabilities typically grow on timescales short in comparison to the inverse-Compton cooling rate, they necessarily suppress the inverse-Compton cascades. As a consequence, this places a severe constraint upon efforts to limit the IGMF from the lack of a discernible GeV bump in TeV sources. Similarly, it considerably weakens the Fermi limits upon the evolution of blazar populations. Specifically, we construct a TeV-blazar luminosity function from those objects presently observed and find that it is very well described by the quasar luminosity function at z~0.1, shifted to lower luminosities and number densities, suggesting that both classes of sources are regulated by similar processes. Extending this relationship to higher redshifts, we show that the magnitude and shape of the EGRB above ~10 GeV is naturally reproduced with this particular example of a rapidly evolving TeV-blazar luminosity function.
A wide range of mechanisms have been proposed to supply the energy for gamma-ray bursts (GRB) at cosmological distances. It is a common misconception that some of these, notably NS-NS mergers, cannot meet the energy requirements suggested by recent o bservations. We show here that GRB energies, even at the most distant redshifts detected, are compatible with current binary merger or collapse scenarios involving compact objects. This is especially so if, as expected, there is a moderate amount of beaming, since current observations constrain the energy per solid angle much more strongly and directly than the total energy. All plausible progenitors, ranging from NS-NS mergers to various hypernova-like scenarios, eventually lead to the formation of a black hole with a debris torus around it, so that the extractable energy is of the same order, 1E+54 ergs, in all cases. MHD conversion of gravitational into kinetic and radiation energy can significantly increase the probability of observing large photon fluxes, although significant collimation may achieve the same effect with neutrino annihilation in short bursts. The lifetime of the debris torus is dictated by a variety of physical processes, such as viscous accretion and various instabilities; these mechanisms dominate at different stages in the evolution of the torus and provide for a range of gamma-ray burst lifetimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا