ﻻ يوجد ملخص باللغة العربية
Fermi has been instrumental in constraining the luminosity function and redshift evolution of gamma-ray bright blazars. This includes limits upon the spectrum and anisotropy of the extragalactic gamma-ray background (EGRB), redshift distribution of nearby Fermi active galactic nuclei (AGN), and the construction of a log(N)-log(S) relation. Based upon these, it has been argued that the evolution of the gamma-ray bright blazar population must be much less dramatic than that of other AGN. However, critical to such claims is the assumption that inverse Compton cascades reprocess emission above a TeV into the Fermi energy range, substantially enhancing the strength of the observed limits. Here we demonstrate that in the absence of such a process, due, e.g., to the presence of virulent plasma beam instabilities that preempt the cascade, a population of TeV-bright blazars that evolve similarly to quasars is consistent with the population of hard gamma-ray blazars observed by Fermi. Specifically, we show that a simple model for the properties and luminosity function is simultaneously able to reproduce their log(N)-log(S) relation, local redshift distribution, and contribution to the EGRB and its anisotropy without any free parameters. Insofar the naturalness of a picture in which the hard gamma-ray blazar population exhibits the strong redshift evolution observed in other tracers of the cosmological history of accretion onto halos is desirable, this lends support for the absence of the inverse Compton cascades and the existence of the beam plasma instabilities.
Inverse-Compton cascades initiated by energetic gamma rays (E>100 GeV) enhance the GeV emission from bright, extragalactic TeV sources. The absence of this emission from bright TeV blazars has been used to constrain the intergalactic magnetic field (
The origin of the extragalactic $gamma$-ray background (EGB) has been debated for some time. { The EGB comprises the $gamma$-ray emission from resolved and unresolved extragalactic sources, such as blazars, star-forming galaxies and radio galaxies, a
Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observ
In principle, the angular anisotropy in the extragalactic gamma-ray background (EGRB) places severe constraints upon putative populations of unresolved gamma-ray point sources. Existing estimates of the EGRB anisotropy have been constructed by excisi
A list of 205 gamma-ray strong objects was reported recently as a result of a 3-month integration with the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope. We attempted identification of these objects, cross-correlating the gamma-ra