ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing Hbeta Line Profiles in the 4D Eigenvector 1 Context

180   0   0.0 ( 0 )
 نشر من قبل Nicolae Zamfir
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a 4D Eigenvector 1 (4DE1) space that serves as a surrogate H-R diagram for quasars. It provides a context for describing and unifying differences between all broad line AGN. Quasar spectra can be averaged in a non-random way using 4DE1 just as stellar spectra can be averaged non-randomly within the OBAFGKM classification sequence. We find that quasars with FWHM H_beta less than (Population A) and greater than (Population B) 4000 km/s show many significant differences that may point to an actual dichotomy. Broad line profile measures and fits reenforce the idea of a dichotomy because they are fundamentally different: Pop.A - Lorentzian-like and Pop.B - double Gaussian. The differences have implications both for BH mass estimation and for inferences about source structure and kinematics.



قيم البحث

اقرأ أيضاً

Gas outflows appear to be a phenomenon shared by the vast majority of quasars. Observations indicate that there is wide range in outflow prominence. In this paper we review how the 4D eigenvector 1 scheme helps to organize observed properties and lea d to meaningful constraints on the outflow physical and dynamical processes.
Recently some pessimism has been expressed about our lack of progress in understanding quasars over the 50+ year since their discovery. It is worthwhile to look back at some of the progress that has been made - but still lies under the radar - perhap s because few people are working on optical/UV spectroscopy in this field. Great advances in understanding quasar phenomenology have emerged using eigenvector techniques. The 4D eigenvector 1 context provides a surrogate H-R Diagram for quasars with a source main sequence driven by Eddington ratio convolved with line-of-sight orientation. Appreciating the striking differences between quasars at opposite ends of the main sequence (so-called population A and B sources) opens the door towards a unified model of quasar physics, geometry and kinematics. We present a review of some of the progress that has been made over the past 15 years, and point out unsolved issues.
Highly accreting quasars are characterized by distinguishing properties in the 4D eigenvector 1 parameter space that make them easily recognizable over a broad range range of redshift and luminosity. The 4D eigenvector 1 approach allows us to define selection criteria that go beyond the restriction to Narrow Line Seyfert 1s identified at low redshift. These criteria are probably able to isolate sources with a defined physical structure i.e., a geometrically thick, optically thick advection-dominated accretion disk (a slim disk). We stress that the importance of highly accreting quasars goes beyond the understanding of the details of their physics: their Eddington ratio is expected to saturate toward values of order unity, making them possible cosmological probes.
Many active galactic nuclei (AGN) show strong variability of the optical continuum. Since the line flux, profile shapes and intensity ratios are changing, we analyze the variability patterns and possible periodicity of Type 1 AGN NGC 5548, using the Eigenvector 1 (EV1) diagram in different variability states, taking advantage of very long term monitoring campaign data. The preliminary results suggest that NGC 5548 - a highly variable object that over several decades has shown large amplitude continuum fluctuations and flaring behavior - remains Pop B. This means that the range in Eddington ratio, even when the source is in a bright state, remains consistent with the value of the low accreting Pop B. We inspected EV 1 parameters of a single object though long term monitoring, assuming an inclination and black hole mass to be constant during the observational time. Our results imply that the main driver for the variations along the EV 1 diagram could be dimensionless accretion rate. If so, then it appears that the source never crossed the boundary for structural changes, indicatively placed at $L/L_{Edd} sim$ 0.2.
276 - Chen Hu 2008
We report on a systematic investigation of the Hbeta and Fe II emission lines in a sample of 568 quasars within z < 0.8 selected from the Sloan Digital Sky Survey. The conventional broad Hbeta emission line can be decomposed into two components--one with intermediate velocity width and another with very broad width. The velocity shift and equivalent width of the intermediate-width component do not correlate with those of the very broad component of Hbeta, but its velocity shift and width do resemble Fe II. Moreover, the width of the very broad component is roughly 2.5 times that of the intermediate-width component. These characteristics strongly suggest the existence of an intermediate-line region, whose kinematics seem to be dominated by infall, located at the outer portion of the broad-line region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا