ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-Linear Convergence of Dual Augmented-Lagrangian Algorithm for Sparsity Regularized Estimation

339   0   0.0 ( 0 )
 نشر من قبل Ryota Tomioka
 تاريخ النشر 2009
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the convergence behaviour of a recently proposed algorithm for regularized estimation called Dual Augmented Lagrangian (DAL). Our analysis is based on a new interpretation of DAL as a proximal minimization algorithm. We theoretically show under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. Due to a special modelling of sparse estimation problems in the context of machine learning, the assumptions we make are milder and more natural than those made in conventional analysis of augmented Lagrangian algorithms. In addition, the new interpretation enables us to generalize DAL to wide varieties of sparse estimation problems. We experimentally confirm our analysis in a large scale $ell_1$-regularized logistic regression problem and extensively compare the efficiency of DAL algorithm to previously proposed algorithms on both synthetic and benchmark datasets.



قيم البحث

اقرأ أيضاً

We propose an efficient algorithm for sparse signal reconstruction problems. The proposed algorithm is an augmented Lagrangian method based on the dual sparse reconstruction problem. It is efficient when the number of unknown variables is much larger than the number of observations because of the dual formulation. Moreover, the primal variable is explicitly updated and the sparsity in the solution is exploited. Numerical comparison with the state-of-the-art algorithms shows that the proposed algorithm is favorable when the design matrix is poorly conditioned or dense and very large.
103 - Yikun Zhang , Yen-Chi Chen 2021
This paper studies linear convergence of the subspace constrained mean shift (SCMS) algorithm, a well-known algorithm for identifying a density ridge defined by a kernel density estimator. By arguing that the SCMS algorithm is a special variant of a subspace constrained gradient ascent (SCGA) algorithm with an adaptive step size, we derive linear convergence of such SCGA algorithm. While the existing research focuses mainly on density ridges in the Euclidean space, we generalize density ridges and the SCMS algorithm to directional data. In particular, we establish the stability theorem of density ridges with directional data and prove the linear convergence of our proposed directional SCMS algorithm.
This paper develops a novel stochastic tree ensemble method for nonlinear regression, which we refer to as XBART, short for Accelerated Bayesian Additive Regression Trees. By combining regularization and stochastic search strategies from Bayesian mod eling with computationally efficient techniques from recursive partitioning approaches, the new method attains state-of-the-art performance: in many settings it is both faster and more accurate than the widely-used XGBoost algorithm. Via careful simulation studies, we demonstrate that our new approach provides accurate point-wise estimates of the mean function and does so faster than popular alternatives, such as BART, XGBoost and neural networks (using Keras). We also prove a number of basic theoretical results about the new algorithm, including consistency of the single tree version of the model and stationarity of the Markov chain produced by the ensemble version. Furthermore, we demonstrate that initializing standard Bayesian additive regression trees Markov chain Monte Carlo (MCMC) at XBART-fitted trees considerably improves credible interval coverage and reduces total run-time.
114 - Huan Qing , Jingli Wang 2020
Spectral clustering methods are widely used for detecting clusters in networks for community detection, while a small change on the graph Laplacian matrix could bring a dramatic improvement. In this paper, we propose a dual regularized graph Laplacia n matrix and then employ it to three classical spectral clustering approaches under the degree-corrected stochastic block model. If the number of communities is known as $K$, we consider more than $K$ leading eigenvectors and weight them by their corresponding eigenvalues in the spectral clustering procedure to improve the performance. Three improved spectral clustering methods are dual regularized spectral clustering (DRSC) method, dual regularized spectral clustering on Ratios-of-eigenvectors (DRSCORE) method, and dual regularized symmetrized Laplacian inverse matrix (DRSLIM) method. Theoretical analysis of DRSC and DRSLIM show that under mild conditions DRSC and DRSLIM yield stable consistent community detection, moreover, DRSCORE returns perfect clustering under the ideal case. We compare the performances of DRSC, DRSCORE and DRSLIM with several spectral methods by substantial simulated networks and eight real-world networks.
105 - Clement Gauchy , Cyril Feau , 2021
As part of Probabilistic Risk Assessment studies, it is necessary to study the fragility of mechanical and civil engineered structures when subjected to seismic loads. This risk can be measured with fragility curves, which express the probability of failure of the structure conditionally to a seismic intensity measure. The estimation of fragility curves relies on time-consuming numerical simulations, so that careful experimental design is required in order to gain the maximum information on the structures fragility with a limited number of code evaluations. We propose and implement an active learning methodology based on adaptive importance sampling in order to reduce the variance of the training loss. The efficiency of the proposed method in terms of bias, standard deviation and prediction interval coverage are theoretically and numerically characterized.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا