ﻻ يوجد ملخص باللغة العربية
The lattice dynamics of Ba1-xKxFe2As2 (x = 0.00, 0.27) have been studied by inelastic X-ray scattering measurement at room temperature. K doping induces the softening and broadening of phonon modes in the energy range E = 10-15 meV. Analysis with a Born-von Karman force-constant model indicates that the softening results from reduced interatomic force constants around (Ba,K) sites following the displacement of divalent Ba by monovalent K. The phonon broadening may be explained by the local distortions induced by the K substitution. Extra phonon modes are observed around the wave vector q = (0.5,0,0) at E = 16.5 meV for the x = 0.27 sample. These modes may arise either from the local disorder induced by K doping or from electron-phonon coupling.
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba1-xKxFe2As2 over a broad range of electron band filling. The fall in the superconducting transi- tion temperature with hole doping coincides with the magnetic e
We report the results of a systematic investigation of the phase diagram of the iron-based superconductor, Ba1-xKxFe2As2, from x = 0 to x = 1.0 using high resolution neutron and x-ray diffraction and magnetization measurements. The polycrystalline sa
The recent discovery of superconductivity in oxypnictides with the critical temperature (TC) higher than McMillan limit of 39 K (the theoretical maximum predicted by Bardeen-Cooper-Schrieffer (BCS) theory) has generated great excitement. Theoretical
We performed a Laser angle-resolved photoemission spectroscopy (ARPES) study on a wide doping range of Ba1-xKxFe2As2 (BaK) and precisely determined the doping evolution of the superconducting (SC) gaps in this compound. The gap size of the outer hole
We report a high resolution neutron diffraction investigation of the coupling of structural and magnetic transitions in Ba1xKxFe2As2. The tetragonal-orthorhombic and antiferromagnetic transitions are suppressed with potassium-doping, falling to zero