ترغب بنشر مسار تعليمي؟ اضغط هنا

The $Z_2$ staggered vertex model and its applications

72   0   0.0 ( 0 )
 نشر من قبل Yacine Ikhlef
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New solvable vertex models can be easily obtained by staggering the spectral parameter in already known ones. This simple construction reveals some surprises: for appropriate values of the staggering, highly non-trivial continuum limits can be obtained. The simplest case of staggering with period two (the $Z_2$ case) for the six-vertex model was shown to be related, in one regime of the spectral parameter, to the critical antiferromagnetic Potts model on the square lattice, and has a non-compact continuum limit. Here, we study the other regime: in the very anisotropic limit, it can be viewed as a zig-zag spin chain with spin anisotropy, or as an anyonic chain with a generic (non-integer) number of species. From the Bethe-Ansatz solution, we obtain the central charge $c=2$, the conformal spectrum, and the continuum partition function, corresponding to one free boson and two Majorana fermions. Finally, we obtain a massive integrable deformation of the model on the lattice. Interestingly, its scattering theory is a massive version of the one for the flow between minimal models. The corresponding field theory is argued to be a complex version of the $C_2^{(2)}$ Toda theory.



قيم البحث

اقرأ أيضاً

110 - W. Galleas 2015
This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamol odchikov equation. The analysis of our PDEs naturally produces a family of novel determinant representations for the models partition function.
60 - W. Galleas 2018
In this work we elaborate on a previous result relating the partition function of the six-vertex model with domain-wall boundary conditions to eigenvalues of a transfer matrix. More precisely, we express the aforementioned partition function as a det erminant of a matrix with entries being eigenvalues of the anti-periodic six-vertex models transfer matrix.
119 - Victor Kac 2015
These lectures were given in Session 1: Vertex algebras, W-algebras, and applications of INdAM Intensive research period Perspectives in Lie Theory at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy, December 9, 2014 -- February 28, 2015.
In this paper, we convert the lattice configurations into networks with different modes of links and consider models on networks with arbitrary numbers of interacting particle-pairs. We solve the Heisenberg model by revealing the relation between the Casimir operator of the unitary group and the conjugacy-class operator of the permutation group. We generalize the Heisenberg model by this relation and give a series of exactly solvable models. Moreover, by numerically calculating the eigenvalue of Heisenberg models and random walks on network with different numbers of links, we show that a system on lattice configurations with interactions between more particle-pairs have higher degeneracy of eigenstates. The highest degeneracy of eigenstates of a lattice model is discussed.
In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the reg ime $Delta<1$. As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches $1/2$. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when $a=b=1$ and $cge1$, and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا