ﻻ يوجد ملخص باللغة العربية
These lectures were given in Session 1: Vertex algebras, W-algebras, and applications of INdAM Intensive research period Perspectives in Lie Theory at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy, December 9, 2014 -- February 28, 2015.
We describe a conjectural classification of Poisson vertex algebras of CFT type and of Poisson vertex algebras in one differential variable (= scalar Hamiltonian operators).
In this paper, we study Virasoro vertex algebras and affine vertex algebras over a general field of characteristic $p>2$. More specifically, we study certain quotients of the universal Virasoro and affine vertex algebras by ideals related to the $p$-
I show that simple finite vertex algebras are commutative, and that the Lie conformal algebra structure underlying a reduced (i.e., without nilpotent elements) finite vertex algebra is nilpotent.
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert