ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy d-Electron Quasiparticle Interference and Real-space Electronic Structure of Sr3Ru2O7

190   0   0.0 ( 0 )
 نشر من قبل Milan Allan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The intriguing idea that strongly interacting electrons can generate spatially inhomogeneous electronic liquid crystalline phases is over a decade old, but these systems still represent an unexplored frontier of condensed matter physics. One reason is that visualization of the many-body quantum states generated by the strong interactions, and of the resulting electronic phases, has not been achieved. Soft condensed matter physics was transformed by microscopies that allowed imaging of real-space structures and patterns. A candidate technique for obtaining equivalent data in the purely electronic systems is Spectroscopic Imaging Scanning Tunneling Microscopy (SI-STM). The core challenge is to detect the tenuous but heavy k-space components of the many-body electronic state simultaneously with its r-space constituents. Sr3Ru2O7 provides a particularly exciting opportunity to address these issues. It possesses (i) a very strongly renormalized heavy d-electron Fermi liquid and (ii) exhibits a field-induced transition to an electronic liquid crystalline phase. Finally, as a layered compound, it can be cleaved to present an excellent surface for SI-STM.



قيم البحث

اقرأ أيضاً

We report angle-resolved photoelectron spectroscopy measurements of the quantum critical metal Sr3Ru2O7 revealing itinerant Ru 4d-states confined over large parts of the Brillouin zone to an energy range of < 6 meV, nearly three orders of magnitude l ower than the bare band width. We show that this energy scale agrees quantitatively with a characteristic thermodynamic energy scale associated with quantum criticality and illustrate how it arises from the hybridization of light and strongly renormalized, heavy quasiparticle bands. For the largest Fermi surface sheet we find a marked k-dependence of the renormalization and show that it correlates with the Ru 4d - O 2p hybridization.
Resonant X-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of the RXS experiments remains theoretically challenging due to the complex ity of the RXS cross-section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasiparticle interference signals observed with the scanning tunneling microscope (STM), can lead to scattering peaks in the RXS experiments. The possibility that quasiparticle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. Here, we test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn$_5$ (M = Co, Rh). Temperature and doping dependent RXS measurements at the Ce-M$_4$ edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasiparticle interference signal in the STM measurements, indicating that quasiparticle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.
Scanning tunneling spectroscopy of the high-Tc superconductor Bi2Sr2CaCu2O8+d reveals weak, incommensurate, spatial modulations in the tunneling conductance. Images of these energy-dependent modulations are Fourier analyzed to yield the dispersion of their wavevectors. Comparison of the dispersions with photoemission spectroscopy data indicates that quasiparticle interference, due to elastic scattering between characteristic regions of momentum-space, provides a consistent explanation for the conductance modulations, without appeal to another order parameter. These results refocus attention on quasiparticle scattering processes as potential explanations for other incommensurate phenomena in the cuprates. The momentum-resolved tunneling spectroscopy demonstrated here also provides a new technique with which to study quasiparticles in correlated materials.
In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the $O(N^3)$ scaling to large $N$, and our tests show that RESCU scales consistently as $O(N^{2.3})$ from a few hundred atoms to more than 5,000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5,832 Si atoms supercell; a 8,788 Al atoms supercell; a 5,324 Cu atoms supercell and a small DNA molecule submerged in 1,713 water molecules for a total 5,399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.
Sr3Ru2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا