ﻻ يوجد ملخص باللغة العربية
Resonant X-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering phenomena in correlated electron systems. Yet, the interpretation of the RXS experiments remains theoretically challenging due to the complexity of the RXS cross-section. Central to this debate is the recent proposal that impurity-induced Friedel oscillations, akin to quasiparticle interference signals observed with the scanning tunneling microscope (STM), can lead to scattering peaks in the RXS experiments. The possibility that quasiparticle properties can be probed in RXS measurements opens up a new avenue to study the bulk band structure of materials with the orbital and element selectivity provided by RXS. Here, we test these ideas by combining RXS and STM measurements of the heavy fermion compound CeMIn$_5$ (M = Co, Rh). Temperature and doping dependent RXS measurements at the Ce-M$_4$ edge show a broad scattering enhancement that correlates with the appearance of heavy f-electron bands in these compounds. The scattering enhancement is consistent with the measured quasiparticle interference signal in the STM measurements, indicating that quasiparticle interference can be probed through the momentum distribution of RXS signals. Overall, our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.
To fully capitalize on the potential and versatility of resonant inelastic x-ray scattering (RIXS), it is essential to develop the capability to interpret different RIXS contributions through calculations, including the dependence on momentum transfe
We report a resonant x-ray scattering (RXS) study of antiferromagnetic neptunium compounds NpCoGa_5 and NpRhGa_5 at the Np M_4 and Ga K-edges. Large resonant signals of magnetic dipole character are observed below the Neel temperatures at both edges.
Comprehensive x-ray scattering studies, including resonant scattering at Mn L-edge, Tb L- and M-edges, were performed on single crystals of TbMn2O5. X-ray intensities were observed at a forbidden Bragg position in the ferroelectric phases, in additio
We consider a two-orbital tight-binding model defined on a layered three-dimensional hexagonal lattice to investigate the properties of topological nodal lines and their associated drumhead surface states. We examine these surface states in centrosym
We have performed a resonant x-ray scattering (RXS) study near the Co K edge on a single crystal of Ca3Co2O6. In the magnetically ordered phase a new class of weak reflections appears at the magnetic propagation vector tau (1/3,1/3,1/3). These new re