ترغب بنشر مسار تعليمي؟ اضغط هنا

The consequence of excess configurational entropy on fragility: the case of a polymer/oligomer blend

48   0   0.0 ( 0 )
 نشر من قبل Cecile Dalle-Ferrier
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Dalle-Ferrier




اسأل ChatGPT حول البحث

By taking advantage of the molecular weight dependence of the glass transition of polymers and their ability to form perfectly miscible blends, we propose a way to modify the fragility of a system, from fragile to strong, keeping the same glass properties, i.e. vibrational density of states, mean-square displacement and local structure. Both slow and fast dynamics are investigated by calorimetry and neutron scattering in an athermal polystyrene/oligomer blend, and compared to those of a pure 17-mer polystyrene considered to be a reference, of same Tg. Whereas the blend and the pure 17-mer have the same heat capacity in the glass and in the liquid, their fragilities differ strongly. This difference in fragility is related to an extra configurational entropy created by the mixing process and acting at a scale much larger than the interchain distance, without affecting the fast dynamics and the structure of the glass.

قيم البحث

اقرأ أيضاً

We provide a perspective on polymer glass formation, with an emphasis on models in which the fluid entropy and collective particle motion dominate the theoretical description and data analysis. We first discuss the dynamics of liquids in the high tem perature Arrhenius regime, where transition state theory is formally applicable. We then summarize the evolution of the entropy theory from a qualitative framework for organizing and interpreting temperature-dependent viscosity data by Kauzmann to the formulation of a hypothetical `ideal thermodynamic glass transition by Gibbs and DiMarzio, followed by seminal measurements linking entropy and relaxation by Bestul and Chang and the Adam-Gibbs (AG) model of glass formation rationalizing the observations of Bestul and Chang. These developments laid the groundwork for the generalized entropy theory (GET), which merges an improved lattice model of polymer thermodynamics accounting for molecular structural details and enabling the analytic calculation of the configurational entropy with the AG model, giving rise to a highly predictive model of the segmental structural relaxation time of polymeric glass-forming liquids. The development of the GET has occurred in parallel with the string model of glass formation in which concrete realizations of the cooperatively rearranging regions are identified and quantified for a wide range of polymeric and other glass-forming materials. The string model has shown that many of the assumptions of AG are well supported by simulations, while others are certainly not, giving rise to an entropy theory of glass formation that is largely in accord with the GET. As the GET and string models continue to be refined, these models progressively grow into a more unified framework, and this Perspective reviews the present status of development of this promising approach to the dynamics of polymeric glass-forming liquids.
Substrate engineering for steering cell growth is a wide and well-established area of research in the field of modern biotechnology. Here we introduce a micromachining technique to pattern an inert, transparent polymer matrix blended with a photoacti ve polymer. We demonstrate that the obtained scaffold combines the capability to align with that to photostimulate living cells. This technology can open up new and promising applications, especially where cell alignment is required to trigger specific biological functions, e.g. generate powerful and efficient muscle contractions following an external stimulus.
Enthalpic interactions at the interface between nanoparticles and matrix polymers is known to influence various properties of the resultant polymer nanocomposites (PNC). For athermal PNCs, consisting of grafted nanoparticles embedded in chemically id entical polymers, the role and extent of the interface layer (IL) interactions in determining the properties of the nanocomposites is not very clear. Here, we demonstrate the influence of the interfacial layer dynamics on the fragility and dynamical heterogeneity (DH) of athermal and glassy PNCs. The IL properties are altered by changing the grafted to matrix polymer size ratio, f, which in turn changes the extent of matrix chain penetration into the grafted layer. The fragility of PNCs is found to increase monotonically with increasing entropic compatibility, characterized by increasing penetration depth. Contrary to observations in most polymers and glass formers, we observe an anti-correlation between the dependence on IL dynamics of fragility and DH, quantified by the experimentally estimated Kohlrausch-Watts-Williams parameter and the non-Gaussian parameter obtained from simulations.
The statistical mechanics of single polymer knots is studied using Monte Carlo simulations. The polymers are considered on a cubic lattice and their conformations are randomly changed with the help of pivot transformations. After each transformation, it is checked if the topology of the knot is preserved by means of a method called pivot algorithm and excluded area (in short PAEA) and described in a previous publication of the authors. As an application of this method the specific energy, the radius of gyration and heat capacity of a few types of knots are computed. The case of attractive short-range forces is investigated. The sampling of the energy states is performed by means of the Wang-Landau algorithm. The obtained results show that the specific energy and heat capacity increase with increasing knot complexity as in the case of repulsive interactions. The data about the gyration radius allow to estimate the size of the polymer knots at different temperatures.
Dynamics of various biological filaments can be understood within the framework of active polymer models. Here we consider a bead-spring model for a flexible polymer chain in which the active interaction among the beads is introduced via an alignment rule adapted from the Vicsek model. Following a quench from the high-temperature coil phase to a low-temperature state point, we study the coarsening kinetics via molecular dynamics (MD) simulations using the Langevin thermostat. For the passive polymer case the low-temperature equilibrium state is a compact globule. Results from our MD simulations reveal that though the globular state is also the typical final state in the active case, the nonequilibrium pathways to arrive at such a state differ from the passive picture due to the alignment interaction among the beads. We notice that deviations from the intermediate pearl-necklace-like arrangement, that is observed in the passive case, and the formation of more elongated dumbbell-like structures increase with increasing activity. Furthermore, it appears that while a small active force on the beads certainly makes the coarsening process much faster, there exists nonmonotonic dependence of the collapse time on the strength of active interaction. We quantify these observations by comparing the scaling laws for the collapse time and growth of pearls with the passive case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا