ترغب بنشر مسار تعليمي؟ اضغط هنا

Are the spin axes of stars randomly aligned within a cluster?

40   0   0.0 ( 0 )
 نشر من قبل Rob Jeffries
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate to what extent the spin axes of stars in young open clusters are aligned. Assuming that the spin vectors lie uniformly within a conical section, with an opening half-angle between lambda=0 (perfectly aligned) and lambda=90 degrees(completely random), we describe a Monte-Carlo modelling technique that returns a probability density for this opening angle given a set of measured sin i values, where i is the unknown inclination angle between a stellar spin vector and the line of sight. Using simulations we demonstrate that although azimuthal information is lost, it is easily possible to discriminate between strongly aligned spin axes and a random distribution, providing that the mean spin-axis inclination lies outside the range 45--75 degrees. We apply the technique to G- and K-type stars in the young Pleiades and Alpha Per clusters. The sin i values are derived using rotation periods and projected equatorial velocities, combined with radii estimated from the cluster distances and a surface brightness/colour relationship. For both clusters we find no evidence for spin-axis alignment: lambda=90 degrees is the most probable model and lambda>40 degrees with 90 per cent confidence. Assuming a random spin-axis alignment, we re-determine the distances to both clusters, obtaining 133+/-7pc for the Pleiades and 182+/-11 pc for Alpha Per. If the assumption of random spin-axis alignment is discarded however, whilst the distance estimate remains unchanged, it has an additional +18/-32 percent uncertainty.

قيم البحث

اقرأ أيضاً

With observations of the EP Cru system, we continue our series of measurements of spin-orbit angles in eclipsing binary star systems, the BANANA project (Binaries Are Not Always Neatly Aligned). We find a close alignment between the sky projections o f the rotational and orbital angular momentum vectors for both stars (beta_p = -1.8+-1.6 deg and |beta_s|<17 deg). We also derive precise absolute dimensions and stellar ages for this system. The EP Cru and DI Her systems provide an interesting comparison: they have similar stellar types and orbital properties, but DI Her is younger and has major spin-orbit misalignments, raising the question of whether EP Cru also had a large misalignment at an earlier phase of evolution. We show that tidal dissipation is an unlikely explanation for the good alignment observed today, because realignment happens on the same timescale as spin-orbit synchronization, and the stars in EP Cru are far from syncrhonization (they are spinning 9 times too quickly). Therefore it seems that some binaries form with aligned axes, while other superficially similar binaries are formed with misaligned axes.
We present results of global three-dimensional (3D) magnetohydrodynamic (MHD) simulations of accretion onto magnetized stars where both the magnetic and rotational axes of the star are tilted about the rotational axis of the disc. We observed that in itially the inner parts of the disc are warped, tilted, and process due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different angles, from 5-10 degrees up to 30-40 degrees. Small tilts may result from the winding of the magnetic field lines about the rotational axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic Bardeen-Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in the disc. Tilted discs slowly precess with the time scale of the order of 50 Keplerian periods at the reference radius (approx. 3 stellar radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.
The R Coronae Borealis (RCB) stars are rare hydrogen-deficient, carbon-rich, supergiants, best known for their spectacular declines in brightness at irregular intervals. Efforts to discover more RCB stars have more than doubled the number known in th e last few years and they appear to be members of an old, bulge population. Two evolutionary scenarios have been suggested for producing an RCB star, a double degenerate merger of two white dwarfs, or a final helium shell flash in a planetary nebula central star. The evidence pointing toward one or the other is somewhat contradictory, but the discovery that RCB stars have large amounts of 18O has tilted the scales towards the merger scenario. If the RCB stars are the product of white dwarf mergers, this would be a very exciting result since RCB stars would then be low-mass analogs of type Ia supernovae. The predicted number of RCB stars in the Galaxy is consistent with the predicted number of He/CO WD mergers. But, so far, only about 65 of the predicted 5000 RCB stars in the Galaxy have been discovered. The mystery has yet to be solved.
A recent photometric survey in the NGC~3766 cluster led to the detection of stars presenting an unexpected variability. They lie in a region of the Hertzsprung-Russell (HR) diagram where no pulsation are theoretically expected, in between the $delta$ Scuti and slowly pulsating B (SPB) star instability domains. Their variability periods, between $sim$0.1--0.7~d, are outside the expected domains of these well-known pulsators. The NCG~3766 cluster is known to host fast rotating stars. Rotation can significantly affect the pulsation properties of stars and alter their apparent luminosity through gravity darkening. Therefore we inspect if the new variable stars could correspond to fast rotating SPB stars. We carry out instability and visibility analysis of SPB pulsation modes within the frame of the traditional approximation. The effects of gravity darkening on typical SPB models are next studied. We find that at the red border of the SPB instability strip, prograde sectoral (PS) modes are preferentially excited, with periods shifted in the 0.2--0.5~d range due to the Coriolis effect. These modes are best seen when the star is seen equator-on. For such inclinations, low-mass SPB models can appear fainter due to gravity darkening and as if they were located between the $delta$~Scuti and SPB instability strips.
195 - Tobias Goerdt 2013
Recent observations have shown that the majority of the Andromeda galaxys satellites are aligned in a thin plane. On the theoretical side it has been proposed that galaxies acquire their gas via cold streams. In addition, numerical simulations show t hat the same streams also deliver gas clumps which could potentially develop into satellite galaxies. Assuming that cold streams are a major source of satellite systems around galaxies we calculate the probabilities in two different models to find a certain fraction of satellites within a thin plane around the central galaxy of the host halo with and without having the same sense of rotation. Using simple geometrical considerations and adopting a random orientation of the streams we demonstrate that the vast thin disk of satellites detected around Andromeda can naturally be explained within this framework. In fact, without any satellite scattering, two streams would lead to too many satellites in the thin plane, compared with the observations. Three streams reproduce the observations very well. Natural implications from our model are that all massive galaxies should have a thin plane of satellites and that the satellites should naturally distribute themselves not only into a single plane but into several inclined ones. We estimate the effect of additional satellites accreted from random directions and find it to be of minor relevance for a mild inflow of satellites from random directions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا