ترغب بنشر مسار تعليمي؟ اضغط هنا

3D MHD Simulations of Accretion onto Stars with Tilted Magnetic and Rotational Axes

116   0   0.0 ( 0 )
 نشر من قبل Marina Romanova
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results of global three-dimensional (3D) magnetohydrodynamic (MHD) simulations of accretion onto magnetized stars where both the magnetic and rotational axes of the star are tilted about the rotational axis of the disc. We observed that initially the inner parts of the disc are warped, tilted, and process due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different angles, from 5-10 degrees up to 30-40 degrees. Small tilts may result from the winding of the magnetic field lines about the rotational axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic Bardeen-Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in the disc. Tilted discs slowly precess with the time scale of the order of 50 Keplerian periods at the reference radius (approx. 3 stellar radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.

قيم البحث

اقرأ أيضاً

87 - C. Nutto , O. Steiner , M. Roth 2012
We investigate the interaction of magneto-acoustic waves with magnetic network elements with the aim of finding possible signatures of the magnetic shadow phenomenon in the vicinity of network elements. We carried out three-dimensional numerical simu lations of magneto-acoustic wave propagation in a model solar atmosphere that is threaded by a complexly structured magnetic field, resembling that of a typical magnetic network element and of internetwork regions. High-frequency waves of 10 mHz are excited at the bottom of the simulation domain. On their way through the upper convection zone and through the photosphere and the chromosphere they become perturbed, refracted, and converted into different mode types. We applied a standard Fourier analysis to produce oscillatory power-maps of the line-of-sight velocity. In the power maps of the upper photosphere and the lower chromosphere, we clearly see the magnetic shadow: a seam of suppressed power surrounding the magnetic network elements. We demonstrate that this shadow is linked to the mode conversion process and that power maps at these height levels show the signature of three different magneto-acoustic wave modes.
81 - Peter B. Dobbie 2009
It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the tur bulence believed necessary for accretion, so far they have not produced the high mass accretion rates required to explain the most powerful sources. We describe new global 3D simulations we are developing to assess the importance of radiation and non-ideal MHD in generating magnetized outflows that can enhance the overall rates of angular momentum transport and mass accretion.
We review recent axisymmetric and three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.
Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g., angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well-resolved, our isolated discs spread out, causing both the alignment and precession to slow down.
101 - Jorn Warnecke 2016
We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. We analyse a 3D MHD model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field inside (and outside) this loop and study the magnetic and plasma properties in and around it. We find that the total current along the loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (i.e. outside the loop) caused by the plasma flow into and along the loop. The locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The acting of the flow on the magnetic field hosting the loop turns out to be also responsible for the observed squashing of the loop. The complex magnetic field and current system surrounding it can be modeled only in 3D MHD models where the magnetic field has to balance the plasma pressure. A 1D coronal loop model or a force-free extrapolation can not capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-$beta$ conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا