ترغب بنشر مسار تعليمي؟ اضغط هنا

Accurate calibration of test mass displacement in the LIGO interferometers

101   0   0.0 ( 0 )
 نشر من قبل Evan Goetz
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe three fundamentally different methods we have applied to calibrate the test mass displacement actuators to search for systematic errors in the calibration of the LIGO gravitational-wave detectors. The actuation frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the weighted mean coefficient over all frequencies for each technique deviates from the average actuation coefficient for all three techniques by less than 4%. This result indicates that systematic errors in the calibration of the responses of the LIGO detectors to differential length variations are within the stated uncertainties.



قيم البحث

اقرأ أيضاً

321 - E. Goetz , P. Kalmus , S. Erickson 2009
Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.
107 - Yanbei Chen 2006
We propose a class of displacement- and laser-noise free gravitational-wave-interferometer configurations, which does not sense non-geodesic mirror motions and laser noises, but provides non-vanishing gravitational-wave signal. Our interferometer con sists of 4 mirrors and 2 beamsplitters, which form 4 Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise free detection is achieved when output signals from these 4 interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f^2, which is better than the f^3 achievable by previous 2-dimensional configurations.
The first generation of ground-based interferometric gravitational wave detectors, LIGO, GEO and Virgo, have operated and taken data at their design sensitivities over the last few years. The data has been examined for the presence of gravitational w ave signals. Presented here is a comprehensive review of the most significant results. The network of detectors is currently being upgraded and extended, providing a large likelihood for observations. These future prospects will also be discussed.
Current limits on violation of local Lorentz invariance in the photon sector are derived mainly from experiments that search for a spatial anisotropy in the speed of light. The presently operating gravitational wave detectors are Michelson interferom eters with long effective arms, 4e5 m, and sensitive to a fringe shift 2e-9. Therefore they can be used to test for a difference in the speed of light in the two arms, as modulated bi-annualy by the orientation of the Earths velocity with respect to the direction of motion of the local system. A limit can be set on the Robertson-Mansouri-Sexl parameter PMM < 10e-15, as compared to its present limit of PMM < 2e-10, an improvement of five orders of magnitude.
The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space-time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا