ﻻ يوجد ملخص باللغة العربية
The Laser Interferometer Gravitational Wave Observatory (LIGO) is a network of three detectors built to detect local perturbations in the space-time metric from astrophysical sources. These detectors, two in Hanford, WA and one in Livingston, LA, are power-recycled Fabry-Perot Michelson interferometers. In their fifth science run (S5), between November 2005 and October 2007, these detectors accumulated one year of triple coincident data while operating at their designed sensitivity. In this paper, we describe the calibration of the instruments in the S5 data set, including measurement techniques and uncertainty estimation.
In 2009-2010, the Laser Interferometer Gravitational-wave Observa- tory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves of astrophysical origin. The sensitiv- ity of these detectors
The LIGO Scientific Collaboration (LSC) glitch group is part of the LIGO detector characterization effort. It consists of data analysts and detector experts who, during and after science runs, collaborate for a better understanding of noise transient
We describe the influence of environmental noise on LIGO detectors in the sixth science run (S6), from July 2009 to October 2010. We show results from experimental investigations testing the coupling level and mechanisms for acoustic, electromagnetic
The sensitivity of gravitational wave searches for binary black holes is estimated via the injection and posterior recovery of simulated gravitational wave signals in the detector data streams. When a search reports no detections, the estimated sensi
We report on a comprehensive all-sky search for periodic gravitational waves in the frequency band 100-1500 Hz and with a frequency time derivative in the range of $[-1.18, +1.00]times 10^{-8}$ Hz/s. Such a signal could be produced by a nearby spinni