ﻻ يوجد ملخص باللغة العربية
It is known the Girsanov exponent $mathfrak{z}_t$, being solution of Doleans-Dade equation $ mathfrak{z_t}=1+int_0^talpha(omega,s)dB_s $ generated by Brownian motion $B_t$ and a random process $alpha(omega,t)$ with $int_0^talpha^2(omega,s)ds<infty$ a.s., is the martingale provided that the Bene${rm check{s}}$ condition $$ |alpha(omega,t)|^2le text{rm const.}big[1+sup_{sin[0,t]}B^2_sbig], forall t>0, $$ holds true. In this paper, we show $B_t$ can be replaced by by a homogeneous purely discontinuous square integrable martingale $M_t$ with independent increments and paths from the Skorokhod space $ mathbb{D}_{[0,infty)} $ having positive jumps $triangle M_t$ with $Esum_{sin[0,t]}(triangle M_s)^3<infty$. A function $alpha(omega,t)$ is assumed to be nonnegative and predictable. Under this setting $mathfrak{z}_t$ is the martingale provided that $$ alpha^2(omega,t)le text{rm const.}big[1+sup_{sin[0,t]}M^2_{s-}big], forall t>0. $$ The method of proof differs from the original Bene${rm check{s}}$ one and is compatible for both setting with $B_t$ and $M_t$.
Let $mathfrak{z}$ be a stochastic exponential, i.e., $mathfrak{z}_t=1+int_0^tmathfrak{z}_{s-}dM_s$, of a local martingale $M$ with jumps $triangle M_t>-1$. Then $mathfrak{z}$ is a nonnegative local martingale with $Emathfrak{z}_tle 1$. If $Emathfrak{
We prove a strong law of large numbers for directed last passage times in an independent but inhomogeneous exponential environment. Rates for the exponential random variables are obtained from a discretisation of a speed function that may be disconti
A continuous-time particle system on the real line verifying the branching property and an exponential integrability condition is called a branching Levy process, and its law is characterized by a triplet $(sigma^2,a,Lambda)$. We obtain a necessary a
In this paper, we obtain stability results for martingale representations in a very general framework. More specifically, we consider a sequence of martingales each adapted to its own filtration, and a sequence of random variables measurable with res
We study the problem of bounding path-dependent expectations (within any finite time horizon $d$) over the class of discrete-time martingales whose marginal distributions lie within a prescribed tolerance of a given collection of benchmark marginal d