ﻻ يوجد ملخص باللغة العربية
A continuous-time particle system on the real line verifying the branching property and an exponential integrability condition is called a branching Levy process, and its law is characterized by a triplet $(sigma^2,a,Lambda)$. We obtain a necessary and sufficient condition for the convergence of the derivative martingale of such a process to a non-trivial limit in terms of $(sigma^2,a,Lambda)$. This extends previously known results on branching Brownian motions and branching random walks. To obtain this result, we rely on the spinal decomposition and establish a novel zero-one law on the perpetual integrals of centred Levy processes conditioned to stay positive.
We work under the A{i}d{e}kon-Chen conditions which ensure that the derivative martingale in a supercritical branching random walk on the line converges almost surely to a nondegenerate nonnegative random variable that we denote by $Z$. It is shown t
In order to analyze joint measurability of given measurements, we introduce a Hermitian operator-valued measure, called $W$-measure, such that it has marginals of positive operator-valued measures (POVMs). We prove that ${W}$-measure is a POVM {em if
The present paper is devoted to finding a necessary and sufficient condition on the occurence of scattering for the regularly hyperbolic systems with time-dependent coefficients whose time-derivatives are integrable over the real line. More precisely
We solve the problem of whether a set of quantum tests reveals state-independent contextuality and use this result to identify the simplest set of the minimal dimension. We also show that identifying state-independent contextuality graphs [R. Ramanat
This paper has been withdrawn. This paper focuses on the admissibility condition for fractional-order singular system with order $alpha in (0,1)$. The definitions of regularity, impulse-free and admissibility are given first, then a sufficient and ne