ترغب بنشر مسار تعليمي؟ اضغط هنا

Identities among relations for higher-dimensional rewriting systems

220   0   0.0 ( 0 )
 نشر من قبل Yves Guiraud
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We generalize the notion of identities among relations, well known for presentations of groups, to presentations of n-categories by polygraphs. To each polygraph, we associate a track n-category, generalizing the notion of crossed module for groups, in order to define the natural system of identities among relations. We relate the facts that this natural system is finitely generated and that the polygraph has finite derivation type.



قيم البحث

اقرأ أيضاً

We introduce acyclic polygraphs, a notion of complete categorical cellular model for (small) categories, containing generators, relations and higher-dimensional globular syzygies. We give a rewriting method to construct explicit acyclic polygraphs fr om convergent presentations. For that, we introduce higher-dimensional normalisation strategies, defined as homotopically coherent ways to relate each cell of a polygraph to its normal form, then we prove that acyclicity is equivalent to the existence of a normalisation strategy. Using acyclic polygraphs, we define a higher-dimensional homotopical finiteness condition for higher categories which extends Squiers finite derivation type for monoids. We relate this homotopical property to a new homological finiteness condition that we introduce here.
We study convergent (terminating and confluent) presentations of n-categories. Using the notion of polygraph (or computad), we introduce the homotopical property of finite derivation type for n-categories, generalizing the one introduced by Squier fo r word rewriting systems. We characterize this property by using the notion of critical branching. In particular, we define sufficient conditions for an n-category to have finite derivation type. Through examples, we present several techniques based on derivations of 2-categories to study convergent presentations by 3-polygraphs.
143 - Louis Martini 2021
We develop some basic concepts in the theory of higher categories internal to an arbitrary $infty$-topos. We define internal left and right fibrations and prove a version of the Grothendieck construction and of Yonedas lemma for internal categories.
Convergent rewriting systems on algebraic structures give methods to solve decision problems, to prove coherence results, and to compute homological invariants. These methods are based on higher-dimensional extensions of the critical branching lemma that characterizes local confluence from confluence of the critical branchings. The analysis of local confluence of rewriting systems on algebraic structures, such as groups or linear algebras, is complicated because of the underlying algebraic axioms, and in some situations, local confluence properties require additional termination conditions. This article introduces the structure of algebraic polygraph modulo that formalizes the interaction between the rules of an algebraic rewriting system and the inherent algebraic axioms, and we show a critical branching lemma for algebraic polygraphs. We deduce from this result a critical branching lemma for rewriting systems on algebraic objects whose axioms are specified by convergent modulo rewriting systems. We illustrate our constructions for string, linear, and group rewriting systems.
Higher genus modular graph tensors map Feynman graphs to functions on the Torelli space of genus-$h$ compact Riemann surfaces which transform as tensors under the modular group $Sp(2h , mathbb Z)$, thereby generalizing a construction of Kawazumi. An infinite family of algebraic identities between one-loop and tree-level modular graph tensors are proven for arbitrary genus and arbitrary tensorial rank. We also derive a family of identities that apply to modular graph tensors of higher loop order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا