ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing-Based Estimate of the Mass Fraction in Compact Objects in Lens

44   0   0.0 ( 0 )
 نشر من قبل Evencio Mediavilla
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We estimate the fraction of mass that is composed of compact objects in gravitational lens galaxies. This study is based on microlensing measurements (obtained from the literature) of a sample of 29 quasar image pairs seen through 20 lens galaxies. We determine the baseline for no microlensing magnification between two images from the ratios of emission line fluxes. Relative to this baseline, the ratio between the continua of the two images gives the difference in microlensing magnification. The histogram of observed microlensing events peaks close to no magnification and is concentrated below 0.6 magnitudes, although two events of high magnification, $Delta m sim 1.5$, are also present. We study the likelihood of the microlensing measurements using frequency distributions obtained from simulated microlensing magnification maps for different values of the fraction of mass in compact objects, $alpha$. The concentration of microlensing measurements close to $Delta m sim 0$ can be explained only by simulations corresponding to very low values of $alpha$ (10% or less). A maximum likelihood test yields $alpha=0.05_{-0.03}^{+0.09}$ (90% confidence interval) for a quasar continuum source of intrinsic size $r_{s_0}sim 2.6 cdot 10^{15} rm cm$. Regarding the current controversy about Milky Way/LMC and M31 microlensing studies, our work supports the hypothesis of a very low content in MACHOS (Massive Compact Halo Objects).

قيم البحث

اقرأ أيضاً

We present a joint estimate of the stellar/dark matter mass fraction in lens galaxies and the average size of the accretion disk of lensed quasars from microlensing measurements of 27 quasar image pairs seen through 19 lens galaxies. The Bayesian est imate for the fraction of the surface mass density in the form of stars is $alpha=0.21pm0.14$ near the Einstein radius of the lenses ($sim 1 - 2$ effective radii). The estimate for the average accretion disk size is $R_{1/2}=7.9^{+3.8}_{-2.6}sqrt{M/0.3M_sun}$ light days. The fraction of mass in stars at these radii is significantly larger than previous estimates from microlensing studies assuming quasars were point-like. The corresponding local dark matter fraction of 79% is in good agreement with other estimates based on strong lensing or kinematics. The size of the accretion disk inferred in the present study is slightly larger than previous estimates.
We report on the mass and distance measurements of two single-lens events from the 2015 emph{Spitzer} microlensing campaign. With both finite-source effect and microlens parallax measurements, we find that the lens of OGLE-2015-BLG-1268 is very likel y a brown dwarf. Assuming that the source star lies behind the same amount of dust as the Bulge red clump, we find the lens is a $45pm7$ $M_{rm J}$ brown dwarf at $5.9pm1.0$ kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a $0.50pm0.04$ $M_odot$ star at $6.9pm1.0$ kpc. We show that the probability to definitively measure the mass of isolated microlenses is dramatically increased once simultaneous ground- and space-based observations are conducted.
78 - Philippe Jetzer 2013
Microlensing observations toward globular clusters could be very useful to probe their low mass star and brown dwarf content. Using the large set of microlensing events detected so far toward the Galactic centre we investigated whether for some of th e observed events the lenses are located in the Galactic globular clusters. Indeed, we found that in four cases some events might be due to lenses located in the globular clusters themselves. Moreover, we discuss a microlensing event found in M22. Using the adaptive optics system NACO at ESO VLT it was possible to identify the lens, which turned out to be a low mass star of about 0.18 solar masses in the globular cluster M22 itself.
The excessive dispersion measure (DM) of fast radio bursts (FRBs) has been proposed to be a powerful tool to study intergalactic medium (IGM) and to perform cosmography. One issue is that the fraction of baryons in the IGM, $f_{rm IGM}$, is not prope rly constrained. Here we propose a method of estimating $f_{rm IGM}$ using a putative sample of FRBs with the measurements of both DM and luminosity distance $d_{rm L}$. The latter can be obtained if the FRB is associated with a distance indicator (e.g. a gamma-ray burst or a gravitational wave event), or the redshift $z$ of the FRB is measured and $d_{rm L}$ at the corresponding $z$ is available from other distance indicators (e.g. type Ia supernovae) at the same redshift. Since $d_{rm L}/{rm DM}$ essentially does not depend on cosmological parameters, our method can determine $f_{rm IGM}$ independent of cosmological parameters. We parameterize $f_{rm IGM}$ as a function of redshift and model the DM contribution from a host galaxy as a function of star formation rate. Assuming $f_{rm IGM}$ has a mild evolution with redshift with a functional form and by means of Monte Carlo simulations, we show that an unbiased and cosmology-independent estimate of the present value of $f_{rm IGM}$ with a $sim 12%$ uncertainty can be obtained with 50 joint measurements of $d_{rm L}$ and DM. In addition, such a method can also lead to a measurement of the mean value of DM contributed from the local host galaxy.
122 - Philippe Jetzer 2013
Microlensing started with the seminal paper by Paczynski in 1986, first with observations towards the Large Magellanic Cloud and the galactic bulge. Since then many other targets have been observed and new applications have been found. In particular, it turned out to be a powerful method to detect planets in our galaxy and even in the nearby M31. Here, we will present some results obtained so far by microlensing without being, however, exhaustive.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا