ترغب بنشر مسار تعليمي؟ اضغط هنا

Flavor Bounds and Phenomenology in the Scalar Sector of RS Scenarios

131   0   0.0 ( 0 )
 نشر من قبل Manuel Toharia
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Manuel Toharia




اسأل ChatGPT حول البحث

In the context of a warped extra-dimension with Standard Model fields in the bulk, we obtain the general flavor structure of the couplings to fermions of both the Higgs scalar and the radion graviscalar. In the Flavor Anarchy paradigm, these couplings are generically misaligned with respect to the fermion mass matrix and moreover the off-diagonal couplings can be estimated parametrically as a function of fermion masses and the observed mixing angles. One can then study the flavor constraints and predictions arising from these couplings.

قيم البحث

اقرأ أيضاً

We present a Randall-Sundrum toy model with an added scalar singlet that couples only to KK fermions in the bulk. Such a scalar would nontrivially affect radion phenomenology. In addition, we examine the radion phenomenology in light of the new scala r and show how this scalar could present another probe to search for the radion.
117 - Amine Ahriche 2015
We perform a phenomenological study of the scalar sector of two models that generate neutrino mass at the three-loop level and contain viable dark matter candidates. Both models contain a charged singlet scalar and a larger scalar multiplet (triplet or quintuplet). We investigate the effect of the extra scalars on the Higgs mass and analyze the modifications to the triple Higgs coupling. The new scalars can give observable changes to the Higgs decay channel $hrightarrowgamma gamma$ and, furthermore, we find that the electroweak phase transition becomes strongly first-order in large regions of parameter space.
Axion models with generation-dependent Peccei-Quinn charges can lead to flavor-changing neutral currents, thus motivating QCD axion searches at precision flavor experiments. We rigorously derive limits on the most general effective flavor-violating c ouplings from current measurements and assess their discovery potential. For two-body decays we use available experimental data to derive limits on $qto q a$ decay rates for all flavor transitions. Axion contributions to neutral-meson mixing are calculated in a systematic way using chiral perturbation theory and operator product expansion. We also discuss in detail baryonic decays and three-body meson decays, which can lead to the best search strategies for some of the couplings. For instance, a strong limit on the $Lambdato n a$ transition can be derived from the supernova SN 1987A. In the near future, dedicated searches for $qto q a$ decays at ongoing experiments could potentially test Peccei-Quinn breaking scales up to $10^{12}$ GeV at NA62 or KOTO, and up to $10^{9}$ GeV at Belle II or BES III.
Radiative symmetry breaking (RSB) is a theoretically appealing framework for the generation of mass scales through quantum effects. It can be successfully implemented in models with extended scalar and gauge sectors. We provide a systematic analysis of RSB in such models: we review the common approximative methods of studying RSB, emphasising their limits of applicability and discuss the relevance of the relative magnitudes of tree-level and loop contributions as well as the dependence of the results on the renormalisation scale. The general considerations are exemplified within the context of the conformal Standard Model extended with a scalar doublet of a new SU(2)$_X$ gauge group, the so-called SU(2)cSM. We show that various perturbative methods of studying RSB may yield significantly different results due to renormalisation-scale dependence. Implementing the renormalisation-group (RG) improvement method recently developed in arXiv:1801.05258, which is well-suited for multi-scale models, we argue that the use of the RG improved effective potential can alleviate this scale dependence providing more reliable results.
We examine new aspects of leptoquark (LQ) phenomenology using effective field theory (EFT). We construct a complete set of leading effective operators involving SU(2) singlets scalar LQ and the SM fields up to dimension six. We show that, while the r enormalizable LQ-lepton-quark interaction Lagrangian can address the persistent hints for physics beyond the Standard Model in the B-decays $bar B to D^{(*)} tau bar u$, $bar B to bar K ell^+ ell^-$ and in the measured anomalous magnetic moment of the muon, the LQ higher dimensional effective operators may lead to new interesting effects associated with lepton number violation. These include the generation of one-loop sub-eV Majorana neutrino masses, mediation of neutrinoless double-$beta$ decay and novel LQ collider signals. For the latter, we focus on 3rd generation LQ ($phi_3$) in a framework with an approximate $Z_3$ generation symmetry, and show that one class of the dimension five LQ operators may give rise to a striking asymmetric same-charge $phi_3 phi_3$ pair-production signal, which leads to low background same-sign leptons signals at the LHC. For example, with $M_{phi_3} sim 1$ TeV and a new physics scale of $Lambda sim 5$ TeV, we expect about $5000$ positively charged $tau^+ tau^+$ events via $pp to phi_3 phi_3 to tau^+ tau^+ + 2 cdot j_b$ ($j_b$=b-jet) at the 13 TeV LHC with an integrated luminosity of 300 fb$^{-1}$. It is interesting to note that, in the LQ EFT framework, the expected same-sign lepton signals have a rate which is several times larger than the QCD LQ-mediated opposite-sign leptons signals, $gg,q bar q to phi_3 phi_3^* to ell^+ ell^- +X$. We also consider the same-sign charged lepton signals in the LQ EFT framework at higher energy hadron colliders such as a 27 TeV HE-LHC and a 100 TeV FCC-hh.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا