ﻻ يوجد ملخص باللغة العربية
Maximum A Posteriori inference in graphical models is often solved via message-passing algorithms, such as the junction-tree algorithm, or loopy belief-propagation. The exact solution to this problem is well known to be exponential in the size of the models maximal cliques after it is triangulated, while approximate inference is typically exponential in the size of the models factors. In this paper, we take advantage of the fact that many models have maximal cliques that are larger than their constituent factors, and also of the fact that many factors consist entirely of latent variables (i.e., they do not depend on an observation). This is a common case in a wide variety of applications, including grids, trees, and ring-structured models. In such cases, we are able to decrease the exponent of complexity for message-passing by 0.5 for both exact and approximate inference.
In this paper we treat both forms of probabilistic inference, estimating marginal probabilities of the joint distribution and finding the most probable assignment, through a unified message-passing algorithm architecture. We generalize the Belief Pro
Network alignment generalizes and unifies several approaches for forming a matching or alignment between the vertices of two graphs. We study a mathematical programming framework for network alignment problem and a sparse variation of it where only a
We consider a broad class of Approximate Message Passing (AMP) algorithms defined as a Lipschitzian functional iteration in terms of an $ntimes n$ random symmetric matrix $A$. We establish universality in noise for this AMP in the $n$-limit and valid
We propose a novel binary message passing decoding algorithm for product-like codes based on bounded distance decoding (BDD) of the component codes. The algorithm, dubbed iterative BDD with scaled reliability (iBDD-SR), exploits the channel reliabili
We improve the running times of $O(1)$-approximation algorithms for the set cover problem in geometric settings, specifically, covering points by disks in the plane, or covering points by halfspaces in three dimensions. In the unweighted case, Agarwa