ترغب بنشر مسار تعليمي؟ اضغط هنا

First-year Sloan Digital Sky Survey-II (SDSS-II) supernova results: consistency and constraints with other intermediate-redshift datasets

424   0   0.0 ( 0 )
 نشر من قبل Hubert Lampeitl
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the luminosity distances of Type Ia Supernovae from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey in conjunction with other intermediate redshift (z<0.4) cosmological measurements including redshift-space distortions from the Two-degree Field Galaxy Redshift Survey (2dFGRS), the Integrated Sachs-Wolfe (ISW) effect seen by the SDSS, and the latest Baryon Acoustic Oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed the SDSS-II SN data alone using a variety of model-independent methods and find evidence for an accelerating universe at >97% level from this single dataset. We find good agreement between the supernova and BAO distance measurements, both consistent with a Lambda-dominated CDM cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (d_L) and angular diameter (d_A) distance measures. We then use these data to estimate w within this restricted redshift range (z<0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81 +0.16 -0.18(stat) +/- 0.15(sys) and Omega_M=0.22 +0.09 -0.08 assuming a flat universe. This value of w, and associated errors, only change slightly if curvature is allowed to vary, consistent with constraints from the Cosmic Microwave Background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.



قيم البحث

اقرأ أيضاً

We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshi ft desert between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame $U$-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.
This paper describes the data release of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey conducted between 2005 and 2007. Light curves, spectra, classifications, and ancillary data are presented for 10,258 variable and transient sources di scovered through repeat ugriz imaging of SDSS Stripe 82, a 300 deg2 area along the celestial equator. This data release is comprised of all transient sources brighter than r~22.5 mag with no history of variability prior to 2004. Dedicated spectroscopic observations were performed on a subset of 889 transients, as well as spectra for thousands of transient host galaxies using the SDSS-III BOSS spectrographs. Photometric classifications are provided for the candidates with good multi-color light curves that were not observed spectroscopically. From these observations, 4607 transients are either spectroscopically confirmed, or likely to be, supernovae, making this the largest sample of supernova candidates ever compiled. We present a new method for SN host-galaxy identification and derive host-galaxy properties including stellar masses, star-formation rates, and the average stellar population ages from our SDSS multi-band photometry. We derive SALT2 distance moduli for a total of 1443 SN Ia with spectroscopic redshifts as well as photometric redshifts for a further 677 purely-photometric SN Ia candidates. Using the spectroscopically confirmed subset of the three-year SDSS-II SN Ia sample and assuming a flat Lambda-CDM cosmology, we determine Omega_M = 0.315 +/- 0.093 (statistical error only) and detect a non-zero cosmological constant at 5.7 sigmas.
The Sloan Digital Sky Survey-II (SDSS-II) has embarked on a multi-year project to identify and measure light curves for intermediate-redshift (0.05 < z < 0.35) Type Ia supernovae (SNe Ia) using repeated five-band (ugriz) imaging over an area of 300 s q. deg. The survey region is a stripe 2.5 degrees wide centered on the celestial equator in the Southern Galactic Cap that has been imaged numerous times in earlier years, enabling construction of a deep reference image for discovery of new objects. Supernova imaging observations are being acquired between 1 September and 30 November of 2005-7. During the first two seasons, each region was imaged on average every five nights. Spectroscopic follow-up observations to determine supernova type and redshift are carried out on a large number of telescopes. In its first two three-month seasons, the survey has discovered and measured light curves for 327 spectroscopically confirmed SNe Ia, 30 probable SNe Ia, 14 confirmed SNe Ib/c, 32 confirmed SNe II, plus a large number of photometrically identified SNe Ia, 94 of which have host-galaxy spectra taken so far. This paper provides an overview of the project and briefly describes the observations completed during the first two seasons of operation.
This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, comp lementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا