ترغب بنشر مسار تعليمي؟ اضغط هنا

First-Year Spectroscopy for the SDSS-II Supernova Survey

250   0   0.0 ( 0 )
 نشر من قبل Chen Zheng
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents spectroscopy of supernovae discovered in the first season of the Sloan Digital Sky Survey-II Supernova Survey. This program searches for and measures multi-band light curves of supernovae in the redshift range z = 0.05 - 0.4, complementing existing surveys at lower and higher redshifts. Our goal is to better characterize the supernova population, with a particular focus on SNe Ia, improving their utility as cosmological distance indicators and as probes of dark energy. Our supernova spectroscopy program features rapid-response observations using telescopes of a range of apertures, and provides confirmation of the supernova and host-galaxy types as well as precise redshifts. We describe here the target identification and prioritization, data reduction, redshift measurement, and classification of 129 SNe Ia, 16 spectroscopically probable SNe Ia, 7 SNe Ib/c, and 11 SNe II from the first season. We also describe our efforts to measure and remove the substantial host galaxy contamination existing in the majority of our SN spectra.

قيم البحث

اقرأ أيضاً

We present measurements of the Hubble diagram for 103 Type Ia supernovae (SNe) with redshifts 0.04 < z < 0.42, discovered during the first season (Fall 2005) of the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. These data fill in the redshi ft desert between low- and high-redshift SN Ia surveys. We combine the SDSS-II measurements with new distance estimates for published SN data from the ESSENCE survey, the Supernova Legacy Survey, the Hubble Space Telescope, and a compilation of nearby SN Ia measurements. Combining the SN Hubble diagram with measurements of Baryon Acoustic Oscillations from the SDSS Luminous Red Galaxy sample and with CMB temperature anisotropy measurements from WMAP, we estimate the cosmological parameters w and Omega_M, assuming a spatially flat cosmological model (FwCDM) with constant dark energy equation of state parameter, w. For the FwCDM model and the combined sample of 288 SNe Ia, we find w = -0.76 +- 0.07(stat) +- 0.11(syst), Omega_M = 0.306 +- 0.019(stat) +- 0.023(syst) using MLCS2k2 and w = -0.96 +- 0.06(stat) +- 0.12(syst), Omega_M = 0.265 +- 0.016(stat) +- 0.025(syst) using the SALT-II fitter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and HST supernovae. We present detailed discussions of systematic errors for both light-curve methods and find that they both show data-model discrepancies in rest-frame $U$-band. For the SALT-II approach, we also see strong evidence for redshift-dependence of the color-luminosity parameter (beta). Restricting the analysis to the 136 SNe Ia in the Nearby+SDSS-II samples, we find much better agreement between the two analysis methods but with larger uncertainties.
We present an analysis of the luminosity distances of Type Ia Supernovae from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey in conjunction with other intermediate redshift (z<0.4) cosmological measurements including redshift-space distor tions from the Two-degree Field Galaxy Redshift Survey (2dFGRS), the Integrated Sachs-Wolfe (ISW) effect seen by the SDSS, and the latest Baryon Acoustic Oscillation (BAO) distance scale from both the SDSS and 2dFGRS. We have analysed the SDSS-II SN data alone using a variety of model-independent methods and find evidence for an accelerating universe at >97% level from this single dataset. We find good agreement between the supernova and BAO distance measurements, both consistent with a Lambda-dominated CDM cosmology, as demonstrated through an analysis of the distance duality relationship between the luminosity (d_L) and angular diameter (d_A) distance measures. We then use these data to estimate w within this restricted redshift range (z<0.4). Our most stringent result comes from the combination of all our intermediate-redshift data (SDSS-II SNe, BAO, ISW and redshift-space distortions), giving w = -0.81 +0.16 -0.18(stat) +/- 0.15(sys) and Omega_M=0.22 +0.09 -0.08 assuming a flat universe. This value of w, and associated errors, only change slightly if curvature is allowed to vary, consistent with constraints from the Cosmic Microwave Background. We also consider more limited combinations of the geometrical (SN, BAO) and dynamical (ISW, redshift-space distortions) probes.
We use the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SNS) data to measure the volumetric core collapse supernova (CCSN) rate in the redshift range (0.03<z<0.09). Using a sample of 89 CCSN we find a volume-averaged rate of (1.06 +/- 0.19) x 10**(-4)/(yr Mpc**3) at a mean redshift of 0.072 +/- 0.009. We measure the CCSN luminosity function from the data and consider the implications on the star formation history.
We analyze the three-year SDSS-II Superernova (SN) Survey data and identify a sample of 1070 photometric SN Ia candidates based on their multi-band light curve data. This sample consists of SN candidates with no spectroscopic confirmation, with a sub set of 210 candidates having spectroscopic redshifts of their host galaxies measured, while the remaining 860 candidates are purely photometric in their identification. We describe a method for estimating the efficiency and purity of photometric SN Ia classification when spectroscopic confirmation of only a limited sample is available, and demonstrate that SN Ia candidates from SDSS-II can be identified photometrically with ~91% efficiency and with a contamination of ~6%. Although this is the largest uniform sample of SN candidates to date for studying photometric identification, we find that a larger spectroscopic sample of contaminating sources is required to obtain a better characterization of the background events. A Hubble diagram using SN candidates with no spectroscopic confirmation, but with host galaxy spectroscopic redshifts, yields a distance modulus dispersion that is only ~20 - 40% larger than that of the spectroscopically-confirmed SN Ia sample alone with no significant bias. A Hubble diagram with purely photometric classification and redshift-distance measurements, however, exhibit biases that require further investigation for precision cosmology.
The first full year of operation following the commissioning year of the Sloan Digital Sky Survey has revealed a wide variety of newly discovered cataclysmic variables. We show the SDSS spectra of forty-two cataclysmic variables observed in 2002, of which thirty-five are new classifications, four are known dwarf novae (CT Hya, RZ Leo, T Leo and BZ UMa), one is a known CV identified from a previous quasar survey (Aqr1) and two are known ROSAT or FIRST discovered CVs (RX J09445+0357, FIRST J102347.6+003841). The SDSS positions, colors and spectra of all forty-two systems are presented. In addition, the results of follow-up studies of several of these objects identify the orbital periods, velocity curves and polarization that provide the system geometry and accretion properties. While most of the SDSS discovered systems are faint (>18th mag) with low accretion rates (as implied from their spectral characteristics), there are also a few bright objects which may have escaped previous surveys due to changes in the mass transfer rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا