ﻻ يوجد ملخص باللغة العربية
Levy-type walks with correlated jumps, induced by the topology of the medium, are studied on a class of one-dimensional deterministic graphs built from generalized Cantor and Smith-Volterra-Cantor sets. The particle performs a standard random walk on the sets but is also allowed to move ballistically throughout the empty regions. Using scaling relations and the mapping onto the electric network problem, we obtain the exact values of the scaling exponents for the asymptotic return probability, the resistivity and the mean square displacement as a function of the topological parameters of the sets. Interestingly, the systems undergoes a transition from superdiffusive to diffusive behavior as a function of the filling of the fractal. The deterministic topology also allows us to discuss the importance of the choice of the initial condition. In particular, we demonstrate that local and average measurements can display different asymptotic behavior. The analytic results are compared with the numerical solution of the master equation of the process.
Levy walks define a fundamental concept in random walk theory which allows one to model diffusive spreading that is faster than Brownian motion. They have many applications across different disciplines. However, so far the derivation of a diffusion e
The problem of characterizing low-temperature spin dynamics in antiferromagnetic spin chains has so far remained elusive. We reinvestigate it by focusing on isotropic antiferromagnetic chains whose low-energy effective field theory is governed by the
We show that d+1-dimensional surface growth models can be mapped onto driven lattice gases of d-mers. The continuous surface growth corresponds to one dimensional drift of d-mers perpendicular to the (d-1)-dimensional plane spanned by the d-mers. Thi
This review is devoted to the detailed consideration of the universal statistical properties of one-dimensional directed polymers in a random potential. In terms of the replica Bethe ansatz technique we derive several exact results for different type
Through Monte Carlo Simulation, the well-known majority-vote model has been studied with noise on directed random graphs. In order to characterize completely the observed order-disorder phase transition, the critical noise parameter $q_c$, as well as