ترغب بنشر مسار تعليمي؟ اضغط هنا

Light bending in the galactic halo by Rindler-Ishak method

85   0   0.0 ( 0 )
 نشر من قبل Kamal Nandi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the work of Rindler and Ishak, it is now well established that the bending of light is influenced by the cosmological constant {Lambda} appearing in the Schwarzschild-de Sitter spacetime. We show that their method, when applied to the galactic halo gravity parametrized by a constant {gamma}, yields exactly the same {gamma}- correction to Schwarzschild bending as obtained by standard methods. Different cases are analyzed, which include some corrections to the special cases considered in the original paper by Rindler and Ishak.

قيم البحث

اقرأ أيضاً

In this paper we study the light bending caused by a slowly rotating source in the context of quadratic theories of gravity, in which the Einstein--Hilbert action is extended by additional terms quadratic in the curvature tensors. The deflection angl e is computed employing the method based on the Gauss--Bonnet theorem and working in the approximation of a weak lens; also, we assume that the source and observer are at an infinite distance. The formalism presented is very general and applies to any spacetime metric in the limit of weak gravitational field and slow rotation. We find the explicit formula for the deflection angle for several local and nonlocal theories, and also discuss some phenomenological implications.
Local gravitational theories with more than four derivatives have remarkable quantum properties, e.g., they are super-renormalizable and may be unitary in the Lee-Wick sense. Therefore, it is important to explore also the IR limit of these theories a nd identify observable signatures of the higher derivatives. In the present work we study the scattering of a photon by a classical external gravitational field in the sixth-derivative model whose propagator contains only real, simple poles. Also, we discuss the possibility of a gravitational seesaw-like mechanism, which could allow the make up of a relatively small physical mass from the huge massive parameters of the action. If possible, this mechanism would be a way out of the Planck suppression, affecting the gravitational deflection of low energy photons. It turns out that the mechanism which actually occurs works only to shift heavier masses to the further UV region. This fact may be favourable for protecting the theory from instabilities, but makes experimental detection of higher derivatives more difficult.
In this paper we review the derivation of light bending obtained before the discovery of General Relativity (GR). It is intended for students learning GR or specialist that will find new lights and connexions on these historic derivations. Since 1915 , it is well known that the observed light bending stems from two contributions : the first one is directly deduced from the equivalence principle alone and was obtained by Einstein in 1911; the second one comes from the spatial curvature of spacetime. In GR, those two components are equal, but other relativistic theories of gravitation can give different values to those contributions. In this paper, we give a simple explanation, based on the wave-particle picture of why the first term, which relies on the equivalence principle, is identical to the one obtained by a purely Newtonian analysis. In this context of wave analysis, we emphasize that the dependency of the velocity of light with the gravitational potential, as deduced by Einstein concerns the phase velocity. Then, we wonder whether Einstein could have envisaged already in 1911 the second contribution, and therefore the correct result. We argue that considering a length contraction in the radial direction, along with the time dilation implied by the equivalence principle, could have led Einstein to the correct result.
We show that in the weak field limit the light deflection alone cannot distinguish between different $R + F[g(square)R]$ models of gravity, where $F$ and $g$ are arbitrary functions. This does not imply, however, that in all these theories an observe r will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.
47 - S. V. Iyer 2018
The deflection of lights trajectory has been studied in many different spacetime geometries in weak and strong gravity, including the special cases of spherically symmetric static and spinning black holes. It is also well known that the rotation of m assive objects results in the dragging of inertial frames in the spacetime geometry. We present here a discussion of the asymmetry that appears explicitly in the exact analytical expression for the bending angle of light on the equatorial plane of the spinning, or Kerr, black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا