ترغب بنشر مسار تعليمي؟ اضغط هنا

Template engineering of Co-doped BaFe2As2 single-crystal thin films

98   0   0.0 ( 0 )
 نشر من قبل Sanghan Lee
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding new superconductors requires high-quality epitaxial thin films to explore intrinsic electromagnetic properties, control grain boundaries and strain effects, and evaluate device applications. So far superconducting properties of ferropnictide thin films appear compromised by imperfect epitaxial growth and poor connectivity of the superconducting phase. Here we report novel template engineering using single-crystal intermediate layers of (001) SrTiO3 and BaTiO3 grown on various perovskite substrates that enables genuine epitaxial films of Co-doped BaFe2As2 with high transition temperature (zero resistivity Tc of 21.5K), small transition widths (delta Tc = 1.3K), superior Jc of 4.5 MA/cm2 (4.2K, self field) and strong c-axis flux pinning. Implementing SrTiO3 or BaTiO3 templates to match the alkaline earth layer in the Ba-122 with the alkaline earth-oxygen layer in the templates opens new avenues for epitaxial growth of ferropnictides on multi-functional single crystal substrates. Beyond superconductors, it provides a framework for growing heteroepitaxial intermetallic compounds on various substrates by matching interfacial layers between templates and thin film overlayers.

قيم البحث

اقرأ أيضاً

75 - C. Tarantini , S. Lee , Y. Zhang 2010
We report measurements of the field and angular dependences of Jc of truly epitaxial Co-doped BaFe2As2 thin films grown on SrTiO3/(La,Sr)(Al,Ta)O3 with different SrTiO3 template thicknesses. The films show Jc comparable to Jc of single crystals and a maximum pinning force Fp(0.6Tc) > 5 GN/m3 at H/Hirr ~ 0.5 indicative of strong vortex pinning effective up to high fields. Due to the strong correlated c-axis pinning, Jc for field along the c-axis exceeds Jc for H//ab plane, inverting the expectation of the Hc2 anisotropy. HRTEM reveals that the strong vortex pinning is due to a high density of nanosize columnar defects.
We report on the layer-by-layer growth of single-crystal Al2O3 thin-films on Nb (110). Single-crystal Nb films are first prepared on A-plane sapphire, followed by the evaporation of Al in an O2 background. The first stages of Al2O3 growth are layer-b y-layer with hexagonal symmetry. Electron and x-ray diffraction measurements indicate the Al2O3 initially grows clamped to the Nb lattice with a tensile strain near 10%. This strain relaxes with further deposition, and beyond about 5 nm we observe the onset of island growth. Despite the asymmetric misfit between the Al2O3 film and the Nb under-layer, the observed strain is surprisingly isotropic.
The temperature dependence of the resistivity of epitaxial Ba(Fe_(1-x)Co_x)2As2 thin films (with nominal doping x = 0.08, 0.10 and 0.15) has been analyzed and compared with analogous measurements on single crystals taken from literature. The rho(T) o f thin films looks different from that of single crystals, even when the cobalt content is the same. All rho(T) curves can be fitted by considering an effective two-band model (with holes and electrons bands) in which the electrons are more strongly coupled with the bosons (spin fluctuations) than holes, while the effect of impurities is mainly concentrated in the hole band. Within this model the mediating boson has the same characteristic energy in single crystals and thin films, but the shape of the transport spectral function at low energy has to be very different, leading to a hardening of the electron-boson spectral function in thin films, associated with the strain induced by the substrate.
318 - F. Kurth , K. Iida , S. Trommler 2012
Superconducting and normal state transport properties in iron pnictides are sensitive to disorder and impurity scattering. By investigation of Ba(Fe1-xCox)2As2 thin films with varying Co concentration, we demonstrate that in the dirty limit the super conducting dome in the electronic phase diagram of Ba(Fe1-xCox)2As2 shifts towards lower doping concentrations, which differs significantly from observations in single crystals. We show that especially in the underdoped regime superconducting transition temperatures higher than 27 K are possible.
Microstructura lly clean, isov alently P-doped BaFe2As2 (Ba-122) single crystalline thin films have been prepared on MgO (001) substrates by molecular beam epitaxy. These films show a superconducting transition temperature (Tc) of over 30 K although P content is around 0.22, which is lower than the optimal one for single crystals (i.e., 0.33). The enhanced Tc at this doping level is attributed to the in-plane tensile strain. The strained film shows high transport self-field critical current densities (Jc) of over 6 MA/cm2 at 4.2 K, which are among the highest for Fe based superconductors (FeSCs). In-field Jc exceeds 0.1 MA/cm2 at m0H = 35 T for H||ab and m0H = 18 T for H||c at 4.2 K, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar Tc. Structural investigations reveal no defects or misoriented grains pointing to strong pinning centers. We relate this unexpected high Jc to a strong enhancement of the vortex core energy at optimal Tc, driven by in-plane strain and doping. These unusually high Jc make P-doped Ba-122 very favorable for high-field magnet applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا