ﻻ يوجد ملخص باللغة العربية
The contribution presents a brief summary of the Gauge/Gravity approach to the study of hydrodynamic flow of the quark-gluon plasma formed in heavy-ion collisions, in a boost-invariant setting (Bjorken flow). Considering the ideal case of a supersymmetric Yang-Mills theory for which the AdS/CFT correspondence gives a precise form of the Gauge/Gravity duality, the properties of the strongly coupled expanding plasma are put in one-to-one correspondence with the metric of a 5-dimensional black hole with the horizon moving away in the 5th dimension and its deformations consistent with the relevant Einstein equations. Several recently studied aspects of this framework are recalled and put in perspective. New results in collaboration with G.Beuf and M.Heller on the early time expansion towards the hydrodynamical regime are provided giving a new insight on the far-from-equilibrium behavior of the fluid at strong coupling and the thermalization and isotropization problems.
This review cover our current understanding of strongly coupled Quark-Gluon Plasma (sQGP), especially theoretical progress in (i) explaining the RHIC data by hydrodynamics, (ii) describing lattice data using electric-magnetic duality; (iii) understan
Monopole-like objects have been identified in multiple lattice studies, and there is now a significant amount of literature on their importance in phenomenology. Some analytic indications of their role, however, are still missing. The t Hooft-Polyako
In the deconfined regime of a non-Abelian gauge theory at nonzero temperature, previously it was argued that if a (gauge invariant) source is added to generate nonzero holonomy, that this source must be linear for small holonomy. The simplest example
Quark-gluon plasma produced at the early stage of ultrarelativistic heavy ion collisions is unstable, if weakly coupled, due to the anisotropy of its momentum distribution. Chromomagnetic fields are spontaneously generated and can reach magnitudes mu
We consider the thermal production of dileptons and photons at temperatures above the critical temperature in QCD. We use a model where color excitations are suppressed by a small value of the Polyakov loop, the semi Quark-Gluon Plasma (QGP). Compari