ﻻ يوجد ملخص باللغة العربية
A method for the calculation of the damping rate due to electron-hole pair excitation for atomic and molecular motion at metal surfaces is presented. The theoretical basis is provided by Time Dependent Density Functional Theory (TDDFT) in the quasi-static limit and calculations are performed within a standard plane-wave, pseudopotential framework. The artificial periodicity introduced by using a super-cell geometry is removed to derive results for the motion of an isolated atom or molecule, rather than for the coherent motion of an ordered over-layer. The algorithm is implemented in parallel, distributed across both ${bf k}$ and ${bf g}$ space, and in a form compatible with the CASTEP code. Test results for the damping of the motion of hydrogen atoms above the Cu(111) surface are presented.
The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a tw
We investigated the mechanism of Na/Ta(110) and Ta/Na(110) interfaces using a combination of bond band barrier (BBB) and zone selective electron spectroscopy (ZES) correlation. We found that 7/9 ML and 8/9 ML Ta metal on a Na(110) surface form one di
The effective on-site Coulomb interaction (Hubbard $U$) between localized electrons at crystal surfaces is expected to be enhanced due to the reduced coordination number and reduced subsequent screening. By means of first principles calculations empl
Wavepacket propagation calculations are reported for the interaction of a Rydberg hydrogen atom ($n=2-8)$ with Cu(111) and Cu(100) surfaces (represented by a Chulkov potential), in comparison with a Jellium surface. Both copper surfaces have a projec
High mobility two-dimensional electron gases (2DEGs) underpin todays silicon based devices and are of fundamental importance for the emerging field of oxide electronics. Such 2DEGs are usually created by engineering band offsets and charge transfer a