ترغب بنشر مسار تعليمي؟ اضغط هنا

Spitzer IRS Spectra of Luminous 8 micron Sources in the Large Magellanic Cloud: Testing color-based classifications

42   0   0.0 ( 0 )
 نشر من قبل Catherine Buchanan
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present archival Spitzer IRS spectra of 19 luminous 8 micron selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on 2MASS/MSX (J, H, K, and 8 micron) colors in order to test the JHK8 classification scheme (Kastner et al. 2008). The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich asymptotic giant branch stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzers warm mission, through the use of IRAC [3.6]-[4.5] and 2MASS colors.

قيم البحث

اقرأ أيضاً

[abridged] We present 52-93 micron spectra obtained with Spitzer in the MIPS-SED mode, of a representative sample of luminous compact far-IR sources in the LMC. These include carbon stars, OH/IR AGB stars, post-AGB objects and PNe, RCrB-type star HV2 671, OH/IR red supergiants WOHG064 and IRAS05280-6910, B[e] stars IRAS04530-6916, R66 and R126, Wolf-Rayet star Brey3a, Luminous Blue Variable R71, supernova remnant N49, a large number of young stellar objects, compact HII regions and molecular cores, and a background galaxy (z~0.175). We use the spectra to constrain the presence and temperature of cold dust and the excitation conditions and shocks within the neutral and ionized gas, in the circumstellar environments and interfaces with the surrounding ISM. Evolved stars, including LBV R71, lack cold dust except in some cases where we argue that this is swept-up ISM. This leads to an estimate of the duration of the prolific dust-producing phase (superwind) of several thousand years for both RSGs and massive AGB stars, with a similar fractional mass loss experienced despite the different masses. We tentatively detect line emission from neutral oxygen in the extreme RSG WOHG064, with implications for the wind driving. In N49, the shock between the supernova ejecta and ISM is revealed by its strong [OI] 63-micron emission and possibly water vapour; we estimate that 0.2 Msun of ISM dust was swept up. Some of the compact HII regions display pronounced [OIII] 88-micron emission. The efficiency of photo-electric heating in the interfaces of ionized gas and molecular clouds is estimated at 0.1-0.3%. We confirm earlier indications of a low nitrogen content in the LMC. Evidence for solid state emission features is found in both young and evolved object; some of the YSOs are found to contain crystalline water ice.
Planetary nebulae (PNe) in the Magellanic Clouds (LMC, SMC) offer a unique opportunity to study both the population and evolution of low- and intermediate-mass stars in an environment which is free of the distance scale bias that hinder Galactic PN s tudies. The emission shown by PNe in the 5-40 $mu$m range is characterized by the presence of a combination of solid state features (from the dust grains) and nebular emission lines over-imposed on a strong dust continuum. We acquired low resolution IRS spectroscopy of a selected sample of LMC and SMC PNe whose morphology, size, central star brightness, and chemical composition are known. The data have been acquired and reduced, and the IRS spectra show outstanding quality as well as very interesting features. The preliminary analysis presented here allows to determine strong correlations between gas and dust composition, and nebular morphology. More detailed analysis in the future will deepen our knowledge of mass-loss mechanism, its efficiency, and its relation to PN morphology.
We present a catalog of 1750 massive stars in the Large Magellanic Cloud, with accurate spectral types compiled from the literature, and a photometric catalog for a subset of 1268 of these stars, with the goal of exploring their infrared properties. The photometric catalog consists of stars with infrared counterparts in the Spitzer SAGE survey database, for which we present uniform photometry from 0.3-24 microns in the UBVIJHKs+IRAC+MIPS24 bands. The resulting infrared color-magnitude diagrams illustrate that the supergiant B[e], red supergiant and luminous blue variable (LBV) stars are among the brightest infrared point sources in the Large Magellanic Cloud, due to their intrinsic brightness, and at longer wavelengths, due to dust. We detect infrared excesses due to free-free emission among ~900 OB stars, which correlate with luminosity class. We confirm the presence of dust around 10 supergiant B[e] stars, finding the shape of their spectral energy distributions (SEDs) to be very similar, in contrast to the variety of SED shapes among the spectrally variable LBVs. The similar luminosities of B[e] supergiants (log L/Lo>=4) and the rare, dusty progenitors of the new class of optical transients (e.g. SN 2008S and NGC 300 OT), plus the fact that dust is present in both types of objects, suggests a common origin for them. We find the infrared colors for Wolf-Rayet stars to be independent of spectral type and their SEDs to be flatter than what models predict. The results of this study provide the first comprehensive roadmap for interpreting luminous, massive, resolved stellar populations in nearby galaxies at infrared wavelengths.
558 - Mikako Matsuura 2014
This paper reports variations of polycyclic aromatic hydrocarbons (PAHs) features that were found in Spitzer Space Telescope spectra of carbon-rich post-asymptotic giant branch (post-AGB) stars in the Large Magellanic Cloud (LMC). The paper consists of two parts. The first part describes our Spitzer spectral observing programme of 24 stars including post-AGB candidates. The latter half of this paper presents the analysis of PAH features in 20 carbon-rich post-AGB stars in the LMC, assembled from the Spitzer archive as well as from our own programme. We found that five post-AGB stars showed a broad feature with a peak at 7.7 micron, that had not been classified before. Further, the 10--13 micron PAH spectra were classified into four classes, one of which has three broad peaks at 11.3, 12.3 and 13.3 micron rather than two distinct sharp peaks at 11.3 and 12.7 micron, as commonly found in HII regions. Our studies suggest that PAHs are gradually processed while the central stars evolve from post-AGB phase to PNe, changing their composition before PAHs are incorporated into the interstellar medium. Although some metallicity dependence of PAH spectra exists, the evolutionary state of an object is more significant than its metallicity in determining the spectral characteristics of PAHs for LMC and Galactic post-AGB stars.
We present Spitzer 16 micron imaging of the Great Observatories Origins Deep Survey (GOODS) fields. We survey 150 square arcminutes in each of the two GOODS fields (North and South), to an average 3 sigma depth of 40 and 65 micro-Jy respectively. We detect about 1300 sources in both fields combined. We validate the photometry using the 3-24 micron spectral energy distribution of stars in the fields compared to Spitzer spectroscopic templates. Comparison with ISOCAM and AKARI observations in the same fields show reasonable agreement, though the uncertainties are large. We provide a catalog of photometry, with sources cross correlated with available Spitzer, Chandra, and HST data. Galaxy number counts show good agreement with previous results from ISOCAM and AKARI, with improved uncertainties. We examine the 16 to 24 micron flux ratio and find that for most sources it lies within the expected locus for starbursts and infrared luminous galaxies. A color cut of S_{16}/S_{24}>1.4 selects mostly sources which lie at 1.1<z<1.6, where the 24 micron passband contains both the redshifted 9.7 micron silicate absorption and the minimum between PAH emission peaks. We measure the integrated galaxy light of 16 micron sources, and find a lower limit on the galaxy contribution to the extragalactic background light at this wavelength to be 2.2pm 0.2$ nW m^{-2} sr^{-1}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا