ﻻ يوجد ملخص باللغة العربية
Within the Standard model with the 4th generation quarks b and t we have analyzed CP-violating flavor changing neutral current processes t -> cX; b-> sX, b-> bX,t-> cX, and t-> tX, with X=Z,H,gamma,g, by constructing and employing global, unique fit for the 4th generation mass mixing matrix CKM4 at 300 < m_t < 700 GeV. All quantities appearing in the CKM4 were subject to our fitting procedure. We have found that our fit produces the following CP partial rate asymmetry dominance: a_CP(b-> s(Z,H,gamma,g))= (90,73,52,30)%, at m_t ~ 300,300,380,400 GeV, respectively. From the experimental point of view the best decay mode, out of the above four, is certainly b-> s gamma, because of the presence of a clean high energy single final state photon. We have also obtained relatively large a_CP(t -> c g) ~ 15 (10)% for t running in the loops with the mass m_t= 650(500) GeV. There are fair chances that the 4th generation quarks will be discovered at Tevatron or LHC and that some of their decay rates shall be measured. If b and t exist at energies we assumed, with well executed tagging, large a_CP could be found too.
We introduce the CP violating scalar leptoquark $S_3$ to explain the measured values of the lepton universality ratios $R_{K^{(*)}}$. We derive constraints on the CP-even and CP-odd components of the leptoquark Yukawa couplings stemming from effects
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
We review the possible role that multi-Higgs models may play in our understanding of the dynamics of a heavy 4th sequential generation of fermions. We describe the underlying ingredients of such models, focusing on two Higgs doublets, and discuss how
I review the status of CP violation in the Standard Model from the combination of flavour constraints within the CKMfitter frequentist approach and I describe studies of New Physics restricted to the Delta F=2 sector to explain recent results on neut
We propose to use the unique event topology and reconstruction capabilities of liquid argon time projection chambers to study sub-GeV atmospheric neutrinos. The detection of low energy recoiled protons in DUNE allows for a determination of the lepton