ﻻ يوجد ملخص باللغة العربية
We study the effect of short term variations of the evolution of AM CVn systems on their gravitational wave emissions and in particular LISA observations. We model the systems according to their equilibrium mass-transfer evolution as driven by gravitational wave emission and tidal interaction, and determine their reaction to a sudden perturbation of the system. This is inspired by the suggestion to explain the orbital period evolution of the ultra-compact binary systems V407 Vul and RX-J0806+1527 by non-equilibrium mass transfer. The characteristics of the emitted gravitational wave signal are deduced from a Taylor expansion of a Newtonian quadrupolar emission model, and the changes in signal structure as visible to the LISA mission are determined. We show that short term variations can significantly change the higher order terms in the expansion, and thus lead to spurious (non) detection of frequency derivatives. This may hamper the estimation of the parameters of the system, in particular their masses and distances. However, we find that overall detection is still secured as signals still can be described by general templates. We conclude that a better modelling of the effects of short term variations is needed to prepare the community for astrophysical evaluations of real gravitational wave data of AM CVn systems.
We present the results of a two and a half year optical photometric monitoring programme covering 16 AM CVn binaries using the Liverpool Telescope on La Palma. We detected outbursts in seven systems, one of which (SDSS J0129) was seen in outburst for
We present results of our analysis of up to 15 years of photometric data from eight AM CVn systems with orbital periods between 22.5 and 26.8 min. Our data has been collected from the GOTO, ZTF, Pan-STARRS, ASAS-SN and Catalina all-sky surveys and am
Using TESS we are doing a systematic study of outbursting AM~CVn systems to place some limits on the current outbursts models. We present the TESS light curve (LC) for 9 AM~CVns showing both superoutbursts (SO) and normal outbursts (NO). The continuo
Results from the first fully general relativistic numerical simulations in axisymmetry of a system formed by a black hole surrounded by a self-gravitating torus in equilibrium are presented, aiming to assess the influence of the torus self-gravity on
AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems