ﻻ يوجد ملخص باللغة العربية
Using a micro particle imaging velocity technique, we resolve for the first time the three dimensionnal structure of wormlike shear banding flows in straight microchannels. The study revealed two effects, which should be generic for shear banding flows: the first is a strong amplification of the confinement induced by the edge of the channel, the second is an instability of the interface between the shear bands. A detailed quantitative comparison of our experimental measurements with a theoretical study of the diffusive Johnson Segalman model leads to excellent agreement. Our study clarifies the nature of shear banding flow instabilities, and shows that, despite the challenging complexity of the situation and the uncertainty regarding their molecular structure, shear banding flows in confined geometries are amenable to quantitative modelling, a feature that opens pathways to their practical utilization.
We report experiments on hard sphere colloidal glasses that reveal a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability arising from shear-concentration coupling, a mechanism previousl
Instability mechanism based on Coriolis force, on a rapidly rotating portable device handling shear thinning fluids such as blood, is of utmost importance for eventual detection of diseases by mixing with the suitable reagents. Motivated by this prop
We analyse the flow curves of a two-dimensional assembly of granular particles which are interacting via frictional contact forces. For packing fractions slightly below jamming, the fluid undergoes a large scale instability, implying a range of stres
We investigate the flow of a nano-scale incompressible ridge of low-volatility liquid along a chemical channel: a long, straight, and completely wetting stripe embedded in a planar substrate, and sandwiched between two extended less wetting solid reg
We study the steady flow properties of different three-dimensional aqueous foams in a wide gap Couette geometry. From local velocity measurements through Magnetic Resonance Imaging techniques and from viscosity bifurcation experiments, we find that t