ﻻ يوجد ملخص باللغة العربية
We describe a general analysis package for supernova (SN) light curves, called SNANA, that contains a simulation, light curve fitter, and cosmology fitter. The software is designed with the primary goal of using SNe Ia as distance indicators for the determination of cosmological parameters, but it can also be used to study efficiencies for analyses of SN rates, estimate contamination from non-Ia SNe, and optimize future surveys. Several SN models are available within the same software architecture, allowing technical features such as K-corrections to be consistently used among multiple models, and thus making it easier to make detailed comparisons between models. New and improved light-curve models can be easily added. The software works with arbitrary surveys and telescopes and has already been used by several collaborations, leading to more robust and easy-to-use code. This software is not intended as a final product release, but rather it is designed to undergo continual improvements from the community as more is learned about SNe. Below we give an overview of the SNANA capabilities, as well as some of its limitations. Interested users can find software downloads and more detailed information from the manuals at http://www.sdss.org/supernova/SNANA.html .
Gravitational waves in the sensitivity band of ground-based detectors can be emitted by a number of astrophysical sources, including not only binary coalescences, but also individual spinning neutron stars. The most promising signals from such source
Over the past few decades, the measurement precision of some pulsar-timing experiments has advanced from ~10 us to ~10 ns, revealing many subtle phenomena. Such high precision demands both careful data handling and sophisticated timing models to avoi
Modern radio pulsar surveys produce a large volume of prospective candidates, the majority of which are polluted by human-created radio frequency interference or other forms of noise. Typically, large numbers of candidates need to be visually inspect
We introduce the STAR-MELT Python package that we developed to facilitate the analysis of time-resolved emission line spectroscopy of young stellar objects. STAR-MELT automatically extracts, identifies and fits emission lines. We summarise our analys
Mori dream spaces form a large example class of algebraic varieties, comprising the well known toric varieties. We provide a first software package for the explicit treatment of Mori dream spaces and demonstrate its use by presenting basic sample com