ﻻ يوجد ملخص باللغة العربية
Mori dream spaces form a large example class of algebraic varieties, comprising the well known toric varieties. We provide a first software package for the explicit treatment of Mori dream spaces and demonstrate its use by presenting basic sample computations. The software package is accompanied by a Cox ring database which delivers defining data for Cox rings and Mori dream spaces in a suitable format. As an application of the package, we determine the common Cox ring for the symplectic resolutions of a certain quotient singularity investigated by Bellamy/Schedler and Donten-Bury/Wisniewski.
We present an algorithm to compute the automorphism group of a Mori dream space. As an example calculation, we determine the automorphism groups of singular cubic surfaces with general parameters. The strategy is to study graded automorphisms of affi
We link small modifications of projective varieties with a ${mathbb C}^*$-action to their GIT quotients. Namely, using flips with centers in closures of Bia{l}ynicki-Birula cells, we produce a system of birational equivariant modifications of the ori
We give a characterization of projective spaces for quasi-log canonical pairs from the Mori theoretic viewpoint.
Motivated by the general question of existence of open A1-cylinders in higher dimensional pro-jective varieties, we consider the case of Mori Fiber Spaces of relative dimension three, whose general closed fibers are isomorphic to the quintic del Pezz
We discuss the cone theorem for quasi-log schemes and the Mori hyperbolicity. In particular, we establish that the log canonical divisor of a Mori hyperbolic projective normal pair is nef if it is nef when restricted to the non-lc locus. This answers