ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetry of magnetization curves of textured BSCCO

42   0   0.0 ( 0 )
 نشر من قبل Denis Gokhfeld
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependence of magnetization on magnetic field M(H) was measured for textured BSCCO samples for H || c, H || ab at different temperatures. Inclusion of the pinning parameter in the Valkov-Khrustalev model [V.V. Valkov, B.P. Khrustalev, JETP 80 (1995) 680] allowed to describe successfully the asymmetric M(H) dependencies. The temperature and magnetic field dependencies of critical current and pinning parameter for H || c and H || ab were estimated.

قيم البحث

اقرأ أيضاً

Inhomogeneous distribution of the pinning force in superconductor results in a magnetization asymmetry. A model considering the field distribution in superconductor was developed and symmetric and asymmetric magnetization loops of porous and textured Bi_{1.8}Pb_{0.3}Sr_{1.9}Ca_{2}Cu_{3}O_{x} were fitted. It is found that the thermal equilibrium magnetization realizes in crystals smaller than some size depending on temperature and magnetic field.
We present results of density functional theory (DFT) calculation of the structural supermodulation in BSCCO-2212 structure, and show that the supermodulation is indeed a spontaneous symmetry breaking of the nominal crystal symmetry, rather than a ph enomenon driven by interstitial O dopants. The structure obtained is in excellent quantitative agreement with recent x-ray studies, and reproduces several qualitative aspects of scanning tunnelling microscopy (STM) experiments as well. The primary structural modulation affecting the CuO_2 plane is found to be a buckling wave of tilted CuO_5 half-octahedra, with maximum tilt angle near the phase of the supermodulation where recent STM experiments have discovered an enhancement of the superconducting gap. We argue that the tilting of the half-octahedra and concommitant planar buckling are directly modulating the superconducting pair interaction.
The dynamics of transient disordered vortex states in BSCCO was magneto-optically traced in three experiments: (i) during continuous injection of transient vortex states while ramping up the external magnetic field, (ii) during annealing of injected transient states while keeping the external field constant, and (iii) during annealing of transient supercooled disordered states while ramping down the external field. The results reveal front-like propagation (experiment i) or retreat (experiments ii and iii) of the transient vortex states, at a rate governed by the rate of change of the external field, the annealing time tau of the transient states and the creep rate. The experimental results are theoretically analyzed in terms of competition between generation and annealing of transient disordered vortex states. Extraction of the annealing time tau from the above three experiments, yields the same results for tau as a function of the induction, B, and temperature T. Knowledge of tau(B,T) allows for correct determination of the thermodynamic order-disorder vortex phase transition line.
171 - J. Corson 2000
We have measured the complex conductivity of a BSCCO(2212) thin film between 0.2 and 1.0 THz. We find the conductivity in the superconducting state to be well described as the sum of contributions from quasiparticles, the condensate, and order parame ter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k_(B)*T/(hbar) for temperatures below Tc.
103 - J. Corson 1999
We report measurements of anamolously large dissipative conductivities in BiSrCaCuO(2212) at low temperatures. We have measured the complex conductivity of BSCCO thin films at 100-600 GHz as a function of doping from the underdoped to the overdoped s tate. At low temperatures there exists a residual dissipative conductivity which scales with the T=0 superfluid density as the doping is varied. This residual dissipative conductivity is larger than the possible contribution from a thermal population of quasiparticles at the d-wave gap nodes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا