ترغب بنشر مسار تعليمي؟ اضغط هنا

Atlas of Vega: 3850 -- 6860 AA

53   0   0.0 ( 0 )
 نشر من قبل Gennady Valyavin G
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a high resolving power ($lambda$ / $Deltalambda$ = 90,000) and high signal-to-noise ratio ($sim$700) spectral atlas of Vega covering the 3850 -- 6860 AA wavelength range. The atlas is a result of averaging of spectra recorded with the aid of the echelle spectrograph BOES fed by the 1.8-m telescope at Bohyunsan observatory (Korea). The atlas is provided only in machine-readable form (electronic data file) and will be available in the SIMBAD database upon publication.


قيم البحث

اقرأ أيضاً

Context. Stellar spectral synthesis is essential for various applications, ranging from determining stellar parameters to comprehensive stellar variability calculations. New observational resources as well as advanced stellar atmosphere modelling, ta king three dimensional (3D) effects from radiative magnetohydrodynamics calculations into account, require a more efficient radiative transfer. Aims. For accurate, fast and flexible calculations of opacity distribution functions (ODFs), stellar atmospheres and stellar spectra we developed an efficient code building on the well-established ATLAS9 code. The new code also paves the way for an easy and fast access to different elemental compositions in stellar calculations. Methods. For the generation of ODF tables we further developed the well-established DFSYNTHE code by implementing additional functionality, and a speed-up by employing a parallel computation scheme. In addition, the line lists used can be changed from Kuruczs recent lists. In particular, we implemented the VALD3 line list. Results. A new code, the Merged Parallelised Simplified ATLAS is presented. It combines the efficient generation of ODF, atmosphere modelling and spectral synthesis in local thermodynamic equilibrium, therefore being an all-in-one code. This all-in-one code provides more numerical functionality and is substantially faster compared to other available codes. The fully portable MPS-ATLAS code is validated against previous ATLAS9 calculations, the PHOENIX code calculations, and high quality observations.
103 - A. M. Hughes 2012
Clumpy structure in the debris disk around Vega has been previously reported at millimeter wavelengths and attributed to concentrations of dust grains trapped in resonances with an unseen planet. However, recent imaging at similar wavelengths with hi gher sensitivity has disputed the observed structure. We present three new millimeter-wavelength observations that help to resolve the puzzling and contradictory observations. We have observed the Vega system with the Submillimeter Array (SMA) at a wavelength of 880 um and angular resolution of 5; with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at a wavelength of 1.3 mm and angular resolution of 5; and with the Green Bank Telescope (GBT) at a wavelength of 3.3 mm and angular resolution of 10. Despite high sensitivity and short baselines, we do not detect the Vega debris disk in either of the interferometric data sets (SMA and CARMA), which should be sensitive at high significance to clumpy structure based on previously reported observations. We obtain a marginal (3-sigma) detection of disk emission in the GBT data; the spatial distribution of the emission is not well constrained. We analyze the observations in the context of several different models, demonstrating that the observations are consistent with a smooth, broad, axisymmetric disk with inner radius 20-100 AU and width >50 AU. The interferometric data require that at least half of the 860 um emission detected by previous single-dish observations with the James Clerk Maxwell Telescope be distributed axisymmetrically, ruling out strong contributions from flux concentrations on spatial scales of <100 AU. These observations support recent results from the Plateau de Bure Interferometer indicating that previous detections of clumpy structure in the Vega debris disk were spurious.
We present an atlas of more than one hundred original images of planetary nebulae (PNe). These images were taken in a narrow-band filter centred on the nebular emission of the [N II] during several observing campaigns using two moderate-aperture tele scopes, at the Complejo Astronomico El Leoncito (CASLEO), and the Estacion Astrofisica de Bosque Alegre (EABA), both in Argentina. The data provided by this atlas represent one of the most extensive image surveys of PNe in [N II]. We compare the new images with those available in the literature, and briefly describe all cases in which our [N II] images reveal new and interesting structures.
Through Spitzer Space Telescopes observations, Su et al. (2005) show that the Vega debris disc is dominated by grains which are small enough to be blown out by radiation pressure. This implies the lifetime of Vega debris discs grains is relatively sh ort, about 1000 years, and a continuous dust production is necessary to maintain the observed debris disc. However, Krivov et al. (2006)s theoretical calculations show that the Vega debris disc is dominated by 10 micro-meter grains, which would be in bound orbits and thus long-lived, provided that the disc is in a steady state. In order to solve the above contradiction, through dynamical simulations, we determine the grains orbital evolutions and density profiles and seek a model of size distribution which can reproduce the observed surface brightness. Our results show that a self-consistent dynamical model with a 1/R disc density profile can be constructed when the grains have a power-law size distribution. Moreover, both types of models, dominated by short-lived and long-lived grains, are consistent with the observational data.
250 - Daniel Bonneau 2010
We obtained spectro-interferometric observations in the visible of $beta$ Lyrae and $upsilon$ Sgr using the instrument VEGA of the CHARA interferometric array. For $beta$ Lyrae, the dispersed fringe visibilities and differential phases were obtained in spectral regions containing the H$alpha$ and HeI 6678 lines and the H$beta$ and HeI 4921 lines. Whereas the source is unresolved in the continuum, the source of the emission lines is resolved and the photocenter of the bulk of the H$alpha$ emission exhibits offsets correlated with the orbital phase. For $upsilon$ Sgr, both the continuum and H$alpha$ sources are resolved, but no clear binary signal is detected. The differential phase shift across the line reveals that the bulk of the H$alpha$ emission is clearly offset from the primary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا