ترغب بنشر مسار تعليمي؟ اضغط هنا

MPS-ATLAS: A fast all-in-one code for synthesising stellar spectra

100   0   0.0 ( 0 )
 نشر من قبل Veronika Witzke
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context. Stellar spectral synthesis is essential for various applications, ranging from determining stellar parameters to comprehensive stellar variability calculations. New observational resources as well as advanced stellar atmosphere modelling, taking three dimensional (3D) effects from radiative magnetohydrodynamics calculations into account, require a more efficient radiative transfer. Aims. For accurate, fast and flexible calculations of opacity distribution functions (ODFs), stellar atmospheres and stellar spectra we developed an efficient code building on the well-established ATLAS9 code. The new code also paves the way for an easy and fast access to different elemental compositions in stellar calculations. Methods. For the generation of ODF tables we further developed the well-established DFSYNTHE code by implementing additional functionality, and a speed-up by employing a parallel computation scheme. In addition, the line lists used can be changed from Kuruczs recent lists. In particular, we implemented the VALD3 line list. Results. A new code, the Merged Parallelised Simplified ATLAS is presented. It combines the efficient generation of ODF, atmosphere modelling and spectral synthesis in local thermodynamic equilibrium, therefore being an all-in-one code. This all-in-one code provides more numerical functionality and is substantially faster compared to other available codes. The fully portable MPS-ATLAS code is validated against previous ATLAS9 calculations, the PHOENIX code calculations, and high quality observations.

قيم البحث

اقرأ أيضاً

We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 mic; R~100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the H ertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of HeI and HeII, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.
We present a new direct spectroscopic calibration for a fast estimation of the stellar metallicity [Fe/H]. These calibrations were computed using a large sample of 451 solar-type stars for which we have precise spectroscopic parameters derived from h igh quality spectra. The new [Fe/H] calibration is based on weak Fe I lines, which are expected to be less dependent on surface gravity and microturbulence, and require only a pre-determination of the effective temperature. This temperature can be obtained using a previously presented line-ratio calibration. We also present a simple code that uses the calibrations and procedures presented in these works to obtain both the effective temperature and the [Fe/H] estimate. The code, written in C, is freely available for the community and may be used as an extension of the ARES code. We test these calibrations for 582 independent FGK stars. We show that the code can be used as a precise and fast indicator of the spectroscopic temperature and metallicity for dwarf FKG stars with effective temperatures ranging from 4500 K to 6500 K and with [Fe/H] ranging from -0.8 dex to 0.4 dex.
The Asteroid Terrestrial-impact Last Alert System (ATLAS) observes most of the sky every night in search of dangerous asteroids. Its data are also used to search for photometric variability, where sensitivity to variability is limited by photometric accuracy. Since each exposure spans 7.6 deg corner to corner, variations in atmospheric transparency in excess of 0.01 mag are common, and 0.01 mag photometry cannot be achieved by using a constant flat field calibration image. We therefore have assembled an all-sky reference catalog of approximately one billion stars to m~19 from a variety of sources to calibrate each exposures astrometry and photometry. Gaia DR2 is the source of astrometry for this ATLAS Refcat2. The sources of g, r, i, z photometry include Pan-STARRS DR1, the ATLAS Pathfinder photometry project, ATLAS re-flattened APASS data, SkyMapper DR1, APASS DR9, the Tycho-2 catalog, and the Yale Bright Star Catalog. We have attempted to make this catalog at least 99% complete to m<19, including the brightest stars in the sky. We believe that the systematic errors are no larger than 5 millimag RMS, although errors are as large as 20 millimag in small patches near the galactic plane.
$Aims.$ We present a database of 43,340 atmospheric models ($sim$80,000 models at the conclusion of the project) for stars with stellar masses between 9 and 120 $M_{odot}$, covering the region of the OB main-sequence and Wolf-Rayet (W-R) stars in the Hertzsprung--Russell (H--R) diagram. $Methods.$ The models were calculated using the ABACUS I supercomputer and the stellar atmosphere code CMFGEN. $Results.$ The parameter space has six dimensions: the effective temperature $T_{eff}$, the luminosity $L$, the metallicity $Z$, and three stellar wind parameters: the exponent $beta$, the terminal velocity $V_{infty}$, and the volume filling factor $F_{cl}$. For each model, we also calculate synthetic spectra in the UV (900-2000 A), optical (3500-7000 A), and near-IR (10000-40000 A) regions. To facilitate comparison with observations, the synthetic spectra can be rotationally broadened using ROTIN3, by covering vsin(i) velocities between 10 and 350 km s$^{-1}$ with steps of 10 km s$^{-1}$. $Conclusions.$ We also present the results of the reanalysis of $epsilon$ Ori using our grid to demonstrate the benefits of databases of precalculated models. Our analysis succeeded in reproducing the best-fit parameter ranges of the original study, although our results favor the higher end of the mass-loss range and a lower level of clumping. Our results indirectly suggest that the resonance lines in the UV range are strongly affected by the velocity-space porosity, as has been suggested by recent theoretical calculations and numerical simulations.
We introduce CoSHA: a Code for Stellar properties Heuristic Assignment. In order to estimate the stellar properties, CoSHA implements a Gradient Tree Boosting algorithm to label each star across the parameter space ($T_{text{eff}}$, $log{g}$, $left[t ext{Fe}/text{H}right]$, and $left[alpha/text{Fe}right]$). We use CoSHA to estimate these stellar atmospheric parameters of $22,$k unique stars in the MaNGA Stellar Library (MaStar). To quantify the reliability of our approach, we run both internal tests using the Gottingen Stellar Library (GSL, a theoretical library) and the first data release of MaStar, and external tests by comparing the resulting distributions in the parameter space with the APOGEE estimates of the same properties. In summary, our parameter estimates span in the ranges: $T_{text{eff}}=[2900,12000],$K, $log{g}=[-0.5,5.6]$, $left[text{Fe}/text{H}right]=[-3.74,0.81]$, $left[alpha/text{Fe}right]=[-0.22,1.17]$. We report internal (external) uncertainties of the properties of $sigma_{T_{text{eff}}}sim48,(325),$K, $sigma_{log{g}}sim0.2,(0.4)$, $sigma_{left[text{Fe}/text{H}right]}sim0.13,(0.27)$, $sigma_{left[alpha/text{Fe}right]}sim0.09,(0.14)$. These uncertainties are comparable to those of other methods with similar objectives. Despite the fact that CoSHA is not aware of the spatial distribution of these physical properties in the Milky Way, we are able to recover the main trends known in the literature with great statistical confidence. The catalogue of physical properties can be accessed in url{http://ifs.astroscu.unam.mx/MaStar}.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا