ﻻ يوجد ملخص باللغة العربية
The loss of amorphous hydrogenated silicon nitride (a-SiN$_{x}$:H) is measured at 30 mK and 5 GHz using a superconducting LC resonator down to energies where a single-photon is stored, and analyzed with an independent two-level system (TLS) defect model. Each a-SiN$_{x}$:H film was deposited with different concentrations of hydrogen impurities. We find that quantum-regime dielectric loss tangent $tandelta_{0}$ in a-SiN$_{x}$:H is strongly correlated with N-H impurities, including NH$_{2}$. By slightly reducing $x$ we are able to reduce $tandelta_0$ by approximately a factor of 50, where the best films show $tandelta_0$ $simeq$ 3 $times$ 10$^{-5}$.
Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. We study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime by measuring the quality fa
Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into RF coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures
We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1 M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface t
A new operating regime of the Superconducting Quantum Interference Filter (SQIF) is investigated. The voltage to magnetic field response function, V(H), is determined by a Fraunhofer dependence of the critical current and magnetic flux focusing effec
We describe a microfabrication process for superconducting through-silicon vias appropriate for use in superconducting qubit quantum processors. With a sloped-wall via geometry, we can use non-conformal metal deposition methods such as electron-beam