ترغب بنشر مسار تعليمي؟ اضغط هنا

Holonomic Quantum Computation with Electron Spins in Quantum Dots

385   0   0.0 ( 0 )
 نشر من قبل Massoud Borhani
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With the help of the spin-orbit interaction, we propose a scheme to perform holonomic single qubit gates on the electron spin confined to a quantum dot. The manipulation is done in the absence (or presence) of an applied magnetic field. By adiabatic changing the position of the confinement potential, one can rotate the spin state of the electron around the Bloch sphere in semiconductor heterostructures. The dynamics of the system is equivalent to employing an effective non-Abelian gauge potential whose structure depends on the type of the spin-orbit interaction. As an example, we find an analytic expression for the electron spin dynamics when the dot is moved around a circular path (with radius R) on the two dimensional electron gas (2DEG), and show that all single qubit gates can be realized by tuning the radius and orientation of the circular paths. Moreover, using the Heisenberg exchange interaction, we demonstrate how one can generate two-qubit gates by bringing two quantum dots near each other, yielding a scalable scheme to perform quantum computing on arbitrary N qubits. This proposal shows a way of realizing holonomic quantum computers in solid-state systems.

قيم البحث

اقرأ أيضاً

We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses minimize the pulse noise and the relaxation of the excited states. An analytic dressed state solution gives a clear physical picture of the entangling process, and a numerical solution is used to investigate the error dynamics. For two vertically-stacked quantum dots we show that, for a broad range of dot parameters, a two-spin state with concurrence $C>0.85$ can be obtained by four optical pulses with durations $sim 0.1 - 1$ ns.
We have observed the Zeeman-split excited state of a spin-1/2 multi-electron Si/SiGe depletion quantum dot and measured its spin relaxation time T1 in magnetic fields up to 2 T. Using a new step-and-reach technique, we have experimentally verified th e g-value of 2.0 +/- 0.1 for the observed Zeeman doublet. We have also measured T1 of single- and multi-electron spins in InGaAs quantum dots. The lifetimes of the Si/SiGe system are appreciably longer than those for InGaAs dots for comparable magnetic field strengths, but both approach one second at sufficiently low fields (< 1 T for Si, and < 0.2 T for InGaAs).
We use time-resolved charge detection techniques to investigate single-electron tunneling in semiconductor quantum dots. The ability to detect individual charges in real-time makes it possible to count electrons one-by-one as they pass through the st ructure. The setup can thus be used as a high-precision current meter for measuring ultra-low currents, with resolution several orders of magnitude better than that of conventional current meters. In addition to measuring the average current, the counting procedure also makes it possible to investigate correlations between charge carriers. In quantum dots, we find that the strong Coulomb interaction makes electrons try to avoid each other. This leads to electron anti-bunching, giving stronger correlations and reduced noise compared to a current carried by statistically independent electrons. The charge detector is implemented by monitoring changes in conductance in a near-by capacitively coupled quantum point contact. We find that the quantum point contact not only serves as a detector but also causes a back-action onto the measured device. Electron scattering in the quantum point contact leads to emission of microwave radiation. The radiation is found to induce an electronic transition between two quantum dots, similar to the absorption of light in real atoms and molecules. Using a charge detector to probe the electron transitions, we can relate a single-electron tunneling event to the absorption of a single photon. Moreover, since the energy levels of the double quantum dot can be tuned by external gate voltages, we use the device as a frequency-selective single-photon detector operating at microwave energies.
102 - Peihao Huang 2021
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en code either a singlet-triplet qubit or two single-spin qubits coupled by exchange interaction. In this article, we report progress on spin dephasing of two exchange-coupled spins in a double quantum dot. We first discuss the schemes of two-qubit gates and qubit encodings in gate-defined quantum dots or donor atoms based on the exchange interaction. Then, we report the progress on spin dephasing of a singlet-triplet qubit or a two-qubit gate. The methods of suppressing spin dephasing are further discussed. The understanding of spin dephasing may provide insights into the realization of high-fidelity quantum gates for spin-based quantum computing.
We investigated the time dependence of two-electron spin states in a double quantum dot fabricated in an InAs nanowire. In this system, spin-orbit interaction has substantial influence on the spin states of confined electrons. Pumping single electron s through a Pauli spin-blockade configuration allowed to probe the dynamics of the two coupled spins via their influence on the pumped current. We observed spin-relaxation with a magnetic field dependence different from GaAs dots, which can be explained by spin-orbit interaction. Oscillations were detected for times shorter than the relaxation time, which we attribute to coherent evolution of the spin states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا