ﻻ يوجد ملخص باللغة العربية
We have discovered that the influence of the surrounding nanotubes in a bundle is similar to that of a liquid having surface tension equal to the surface energy of the nanotubes. This surprising behaviour is confirmed by the calculation of the self-collapse diameters of nanotubes in a bundle. Other systems, such as peapods, fullerites, are similarly treated, including the effect of the presence of a solvent. Finally, we have evaluated the strength and toughness of the nanotube bundle, with or without collapsed nanotubes, assuming a sliding failure.
We discovered in simulations of sliding coaxial nanotubes an unanticipated example of dynamical symmetry breaking taking place at the nanoscale. While both nanotubes are perfectly left-right symmetric and nonchiral, a nonzero angular momentum of phon
We study the low temperature phase behavior of hydrogen within a bundle of carbon nanotubes. Because the carbon environment weakens the attraction between molecules within the same interstitial channel (IC), the ground state of the one-dimensional (1
The so-called interlayer-sliding ferroelectricity was recently proposed as an unconventional route to pursuit electric polarity in van der Waals multi-layers, which was already experimentally confirmed in WTe$_2$ bilayer even though it is metallic. V
The generalized tight-binding model, based on the subenvelope functions of distinct sublattices, is developed to investigate the magnetic quantization in sliding bilayer graphenes. The relative shift of two graphene layers induces a dramatic transfor
A new class of tetragonally symmetric 2D octagonal family of monolayers (o-MLs) has emerged recently and demands understanding at the fundamental level. o-MLs of metal nitride and carbide family (BN, AlN, GaN, GeC, SiC) along with C and BP are comput